The Big Book of Large Language Models by Damien Benveniste
✅ Chapters:
1⃣ Introduction
🔢 Language Models Before Transformers
🔢 Attention Is All You Need: The Original Transformer Architecture
🔢 A More Modern Approach To The Transformer Architecture
🔢 Multi-modal Large Language Models
🔢 Transformers Beyond Language Models
🔢 Non-Transformer Language Models
🔢 How LLMs Generate Text
🔢 From Words To Tokens
1⃣ 0⃣ Training LLMs to Follow Instructions
1⃣ 1⃣ Scaling Model Training
1⃣ 🔢 Fine-Tuning LLMs
1⃣ 🔢 Deploying LLMs
Read it: https://book.theaiedge.io/
Read it: https://book.theaiedge.io/
#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤4👎1
👨🏻💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.
#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35❤15👏1
rnn.pdf
5.6 MB
🔍 Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!💡
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!
#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍3
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks — full tutorials and code available on GitHub:
1️⃣ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2️⃣ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3️⃣ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4️⃣ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
➡️ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
1️⃣ Text-Based Applications
1.1. Building a Chatbot Using HuggingFace Open Source Models
https://lnkd.in/dku3bigK
1.2. Building a Text Translation System using Meta NLLB Open-Source Model
https://lnkd.in/dgdjaFds
2️⃣ Speech-Based Applications
2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model
https://lnkd.in/dbgQgDyn
2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio
https://lnkd.in/dcbp-8fN
2.3. Building Text-to-Speech Systems Using VITS & ArTST Models
https://lnkd.in/dwFcQ_X5
3️⃣ Image-Based Applications
3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model
https://lnkd.in/dnk6epGB
3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide
https://lnkd.in/d573SvYV
3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)
https://lnkd.in/dFavEdHS
3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio
https://lnkd.in/d9jjJu_g
4️⃣ Vision Language Applications
4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models
https://lnkd.in/dHNFaHFV
4.2. Building an Image Captioning System using Salesforce Blip Model
https://lnkd.in/dh36iDn9
4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models
https://lnkd.in/d7fsJEAF
➡️ You can find the articles and the codes for each article in this GitHub repo:
https://lnkd.in/dG5jfBwE
#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13💯1
Master MCP: The Best Free Learning Resources
1️⃣ Everything you need to know about MCP: The first learning resource is a beginner-friendly introduction to MCP by Replit
https://lnkd.in/djVD73Gz
2️⃣ Model Context Protocol (MCP): A Guide With Demo Project: In this blog, you will be guided through building an MCP-powered PR review server that integrates with Claude Desktop
https://lnkd.in/dXDNbAat
3️⃣ Model Context Protocol (MCP) Hugging Face Course: This free course will take you on a journey, from beginner to informed, in understanding, using, and building applications with MCP
https://lnkd.in/dX5Ja_9m
4️⃣ MCP: Build Rich-Context AI Apps with Anthropic: In this hands-on course, you’ll learn the core concepts of MCP and how to implement it in your AI Application
https://lnkd.in/dxRyjRiW
5️⃣ Official MCP Documents: The official MCP docs are a good resource to learn the fundamentals, a tutorial to create your first MCP server, debugging, and inspection instructions
https://lnkd.in/dqkQ6e_b
6️⃣ Awesome MCP Servers: A curated list of awesome Model Context Protocol (MCP) servers
https://lnkd.in/d2AvkBmb
🌟 You can find more information about each learning resource in this article:
https://lnkd.in/dbDHJnNi
https://lnkd.in/djVD73Gz
https://lnkd.in/dXDNbAat
https://lnkd.in/dX5Ja_9m
https://lnkd.in/dxRyjRiW
https://lnkd.in/dqkQ6e_b
https://lnkd.in/d2AvkBmb
https://lnkd.in/dbDHJnNi
#MCP #ModelContextProtocol #AIApplications #ContextAwareAI #MCPLearning #Anthropic #HuggingFace #Replit #AIIntegration #AIFrameworks #OpenSourceAI #LearnMCP #AIEngineering #PromptEngineering #AIProtocols
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5