Python | Machine Learning | Coding | R
63K subscribers
1.13K photos
68 videos
144 files
790 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
The Big Book of Large Language Models by Damien Benveniste

Chapters:
1⃣ Introduction

🔢 Language Models Before Transformers

🔢 Attention Is All You Need: The Original Transformer Architecture

🔢 A More Modern Approach To The Transformer Architecture

🔢 Multi-modal Large Language Models

🔢 Transformers Beyond Language Models

🔢 Non-Transformer Language Models

🔢 How LLMs Generate Text

🔢 From Words To Tokens

1⃣0⃣ Training LLMs to Follow Instructions

1⃣1⃣ Scaling Model Training

1⃣🔢 Fine-Tuning LLMs

1⃣🔢 Deploying LLMs

Read it: https://book.theaiedge.io/

#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍174👎1
🔰 How to become a data scientist in 2025?

👨🏻‍💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


🔢 Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

Linear algebra: matrices, vectors, eigenvalues.

🔗 Course: MIT 18.06 Linear Algebra


Calculus: derivative, integral, optimization.

🔗 Course: MIT Single Variable Calculus


Statistics and probability: Bayes' theorem, hypothesis testing.

🔗 Course: Statistics 110



🔢 Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

Python: Pandas, NumPy, Matplotlib libraries

🔗 Course: FreeCodeCamp Python Course

SQL language: Join commands, Window functions, query optimization.

🔗 Course: Stanford SQL Course

Data structures and algorithms: arrays, linked lists, trees.

🔗 Course: MIT Introduction to Algorithms



🔢 Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

Data cleaning: Working with missing values ​​and detecting outliers.

🔗 Course: Data Cleaning

Data visualization: Matplotlib, Seaborn, Tableau

🔗 Course: Data Visualization Tutorial



🔢 Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

Supervised learning: regression, classification.

Unsupervised learning: clustering, PCA, anomaly detection.

Deep learning: neural networks, CNN, RNN


🔗 Course: CS229: Machine Learning



🔢 Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

Big Data Tools: Hadoop, Spark, Dask

Cloud platforms: AWS, GCP, Azure

🔗 Course: Data Engineering



🔢 Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

Kaggle competitions: solving real-world challenges.

End-to-End projects: data collection, modeling, implementation.

GitHub: Publish your projects on GitHub.

🔗 Platform: Kaggle🔗 Platform: ods.ai



🔢 Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

MLOps training: model versioning, monitoring, model retraining.

Deployment models: Flask, FastAPI, Docker

🔗 Course: Stanford MLOps Course



🔢 Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

Read scientific articles: arXiv, Google Scholar

Connect with the data community:

🔗 Site: Papers with code
🔗 Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515👏1
🔥 How to become a data scientist in 2025?


1️⃣ First of all, strengthen your foundation (math and statistics) .

✏️ If you don't know math, you'll run into trouble wherever you go. Every model you build, every analysis you do, there's a world of math behind it. You need to know these things well:

Linear Algebra: Link

Calculus: Link

Statistics and Probability: Link



2️⃣ Then learn programming !

✏️ Without further ado, get started learning Python and SQL.

Python: Link

SQL language: Link

Data Structures and Algorithms: Link



3️⃣ Learn to clean and analyze data!

✏️ Data is always messy, and a data scientist must know how to organize it and extract insights from it.

Data cleansing: Link

Data visualization: Link



4️⃣ Learn machine learning !

✏️ Once you've mastered the basic skills, it's time to enter the world of machine learning. Here's what you need to know:

◀️ Supervised learning: regression, classification

◀️ Unsupervised learning: clustering, dimensionality reduction

◀️ Deep learning: neural networks, CNN, RNN

Stanford University CS229 course: Link



5️⃣ Get to know big data and cloud computing !

✏️ Large companies are looking for people who can work with large volumes of data.

◀️ Big data tools (e.g. Hadoop, Spark, Dask)

◀️ Cloud services (AWS, GCP, Azure)



6️⃣ Do a real project and build a portfolio !

✏️ Everything you've learned so far is worthless without a real project!

◀️ Participate in Kaggle and work with real data.

◀️ Do a project from scratch (from data collection to model deployment)

◀️ Put your code on GitHub.

Open Source Data Science Projects: Link



7️⃣ It's time to learn MLOps and model deployment!

✏️ Many people just build models but don't know how to deploy them. But companies want someone who can put the model into action!

◀️ Machine learning operationalization (monitoring, updating models)

◀️ Model deployment tools: Flask, FastAPI, Docker

Stanford University MLOps Course: Link



8️⃣ Always stay up to date and network!

✏️ Follow research articles on arXiv and Google Scholar.

Papers with Code website: link

AI Research at Google website: link

#DataScience #HowToBecomeADataScientist #ML2025 #Python #SQL #MachineLearning #MathForDataScience #BigData #MLOps #DeepLearning #AIResearch #DataVisualization #PortfolioProjects #CloudComputing #DSCareerPath

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍5🔥1
Anyone trying to deeply understand Large Language Models.

Checkout
Foundations of Large Language Models


by Tong Xiao & Jingbo Zhu. It’s one of the clearest, most comprehensive resource.

⭐️ Paper Link: arxiv.org/pdf/2501.09223

#LLMs #LargeLanguageModels #AIResearch #DeepLearning #MachineLearning #AIResources #NLP #AITheory #FoundationModels #AIUnderstanding



✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
14
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.

(75 pages, 10+ projects & visual explainers)

Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:

* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers

Projects included:

1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit

#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13👨‍💻1