Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
67 videos
143 files
787 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks — full tutorials and code available on GitHub:

1️⃣ Text-Based Applications

1.1. Building a Chatbot Using HuggingFace Open Source Models

https://lnkd.in/dku3bigK

1.2. Building a Text Translation System using Meta NLLB Open-Source Model

https://lnkd.in/dgdjaFds

2️⃣ Speech-Based Applications

2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model

https://lnkd.in/dbgQgDyn

2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio

https://lnkd.in/dcbp-8fN

2.3. Building Text-to-Speech Systems Using VITS & ArTST Models

https://lnkd.in/dwFcQ_X5

3️⃣ Image-Based Applications

3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model

https://lnkd.in/dnk6epGB

3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide

https://lnkd.in/d573SvYV

3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)

https://lnkd.in/dFavEdHS

3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio

https://lnkd.in/d9jjJu_g

4️⃣ Vision Language Applications

4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models

https://lnkd.in/dHNFaHFV

4.2. Building an Image Captioning System using Salesforce Blip Model

https://lnkd.in/dh36iDn9

4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models

https://lnkd.in/d7fsJEAF

➡️ You can find the articles and the codes for each article in this GitHub repo:

https://lnkd.in/dG5jfBwE

#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13💯1
10 GitHub repos to build a career in AI engineering:

(100% free step-by-step roadmap)

1️⃣ ML for Beginners by Microsoft

A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.

Includes quizzes, lessons, and hands-on projects, with some videos.

GitHub repo → https://lnkd.in/dCxStbYv

2️⃣ AI for Beginners by Microsoft

This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.

Beginner-friendly, project-based, and full of real-world apps.

GitHub repo → https://lnkd.in/dwS5Jk9E

3️⃣ Neural Networks: Zero to Hero

Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.

This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.

GitHub repo → https://lnkd.in/dXAQWucq

4️⃣ DL Paper Implementations

So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.

This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.

GitHub repo → https://lnkd.in/dTrtDrvs

5️⃣ Made With ML

Now it’s time to learn how to go from notebooks to production.

Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.

GitHub repo → https://lnkd.in/dYyjjBGb

6️⃣ Hands-on LLMs

- You've built neural nets.
- You've explored GPTs and LLMs.

Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.

GitHub repo → https://lnkd.in/dh2FwYFe

7️⃣ Advanced RAG Techniques

Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.

This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.

GitHub repo → https://lnkd.in/dBKxtX-D

8️⃣ AI Agents for Beginners by Microsoft

After diving into LLMs and mastering RAG, learn how to build AI agents.

This hands-on course covers building AI agents using frameworks like AutoGen.

GitHub repo → https://lnkd.in/dbFeuznE

9️⃣ Agents Towards Production

The above course will teach what AI agents are. Next, learn how to ship them.

This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.

GitHub repo → https://lnkd.in/dcwmamSb

🔟 AI Engg. Hub

To truly master LLMs, RAG, and AI agents, you need projects.

This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.

GitHub repo → https://lnkd.in/geMYm3b6

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
6
Master MCP: The Best Free Learning Resources

1️⃣ Everything you need to know about MCP: The first learning resource is a beginner-friendly introduction to MCP by Replit
https://lnkd.in/djVD73Gz

2️⃣ Model Context Protocol (MCP): A Guide With Demo Project: In this blog, you will be guided through building an MCP-powered PR review server that integrates with Claude Desktop
https://lnkd.in/dXDNbAat

3️⃣ Model Context Protocol (MCP) Hugging Face Course: This free course will take you on a journey, from beginner to informed, in understanding, using, and building applications with MCP
https://lnkd.in/dX5Ja_9m

4️⃣ MCP: Build Rich-Context AI Apps with Anthropic: In this hands-on course, you’ll learn the core concepts of MCP and how to implement it in your AI Application
https://lnkd.in/dxRyjRiW

5️⃣ Official MCP Documents: The official MCP docs are a good resource to learn the fundamentals, a tutorial to create your first MCP server, debugging, and inspection instructions
https://lnkd.in/dqkQ6e_b

6️⃣ Awesome MCP Servers: A curated list of awesome Model Context Protocol (MCP) servers
https://lnkd.in/d2AvkBmb

🌟 You can find more information about each learning resource in this article:
https://lnkd.in/dbDHJnNi

#MCP #ModelContextProtocol #AIApplications #ContextAwareAI #MCPLearning #Anthropic #HuggingFace #Replit #AIIntegration #AIFrameworks #OpenSourceAI #LearnMCP #AIEngineering #PromptEngineering #AIProtocols
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
5
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.

(75 pages, 10+ projects & visual explainers)

Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:

* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers

Projects included:

1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit

#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
11👨‍💻1
Auto-Encoder & Backpropagation by hand ✍️ lecture video ~ 📺 https://byhand.ai/cv/10

It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.

= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
3