#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
π12π―5π₯3π1π1
βοΈ Download Free AI Materials :
π Need 1-on-1 IT Exam Help? Contact Now:
Please open Telegram to view this post
VIEW IN TELEGRAM
π8β€3π―1
Datasets Guide π
A practical and beginner-friendly guide that walks you through everything you need to know about datasets in machine learning and deep learning. This guide explains how to load, preprocess, and use datasets effectively for training models. It's an essential resource for anyone working with LLMs or custom training workflows, especially with tools like Unsloth.
Importance:
Understanding how to properly handle datasets is a critical step in building accurate and efficient AI models. This guide simplifies the process, helping you avoid common pitfalls and optimize your data pipeline for better performance.
Link: https://docs.unsloth.ai/basics/datasets-guide
#MachineLearning #DeepLearning #Datasets #DataScience #AI #Unsloth #LLM #TrainingData #MLGuide
β‘οΈ BEST DATA SCIENCE CHANNELS ON TELEGRAM π
A practical and beginner-friendly guide that walks you through everything you need to know about datasets in machine learning and deep learning. This guide explains how to load, preprocess, and use datasets effectively for training models. It's an essential resource for anyone working with LLMs or custom training workflows, especially with tools like Unsloth.
Importance:
Understanding how to properly handle datasets is a critical step in building accurate and efficient AI models. This guide simplifies the process, helping you avoid common pitfalls and optimize your data pipeline for better performance.
Link: https://docs.unsloth.ai/basics/datasets-guide
#MachineLearning #DeepLearning #Datasets #DataScience #AI #Unsloth #LLM #TrainingData #MLGuide
Please open Telegram to view this post
VIEW IN TELEGRAM
π9β€2
#MLOps #MachineLearning #DataScience #AI #ModelMonitoring #MLPipelines #Docker #MLSystemDesign #ExperimentTracking #LLMOps #NeuralNetworks #DeepLearning #AITools #MLProjects #MLOpsRoadmap
Please open Telegram to view this post
VIEW IN TELEGRAM
π15π₯2β€1
A Complete Course to Learn Robotics and Perception
Notebook-based book "Introduction to Robotics and Perception" by Frank Dellaert and Seth Hutchinson
github.com/gtbook/robotics
roboticsbook.org/intro.html
β‘οΈ BEST DATA SCIENCE CHANNELS ON TELEGRAM π
Notebook-based book "Introduction to Robotics and Perception" by Frank Dellaert and Seth Hutchinson
github.com/gtbook/robotics
roboticsbook.org/intro.html
#Robotics #Perception #AI #DeepLearning #ComputerVision #RoboticsCourse #MachineLearning #Education #RoboticsResearch #GitHub
Please open Telegram to view this post
VIEW IN TELEGRAM
π12β€2
Explore the comprehensive world of Reinforcement Learning (RL) with this authoritative textbook by Dimitri P. Bertsekas. This book offers an in-depth overview of RL methodologies, focusing on optimal and suboptimal control, as well as discrete optimization. It's an essential resource for students, researchers, and professionals in the field.
https://web.mit.edu/dimitrib/www/RLCOURSECOMPLETE%202ndEDITION.pdf
#ReinforcementLearning #MachineLearning #AI #Bertsekas #FreeEbook #OptimalControl #DynamicProgramming
Please open Telegram to view this post
VIEW IN TELEGRAM
π14β€1
Mastering CNNs: From Kernels to Model Evaluation
If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Letβs break it down from basic to advanced.
1. What is Conv2D?
Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.
2. What is a Kernel (or Filter)?
A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.
A 3x3 kernel means the filter looks at 3x3 chunks of the image.
The kernel detects patterns like edges, textures, etc.
Example:
A vertical edge detection kernel might look like:
[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]
3. What Are Filters in Conv2D?
In CNNs, we donβt use just one filterβwe use multiple filters in a single Conv2D layer.
Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).
So if you have 32 filters in the Conv2D layer, youβll get 32 feature maps.
More Filters = More Features = More Learning Power
4. Kernel Size and Its Impact
Smaller kernels (e.g., 3x3) are most common; they capture fine details.
Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.
Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.
5. Life Cycle of a CNN Model (From Data to Evaluation)
Letβs visualize how a CNN model works from start to finish:
Step 1: Data Collection
Images are gathered and labeled (e.g., cat vs dog).
Step 2: Preprocessing
Resize images
Normalize pixel values
Data augmentation (flipping, rotation, etc.)
Step 3: Model Building (Conv2D layers)
Add Conv2D + Activation (ReLU)
Use Pooling layers (MaxPooling2D)
Add Dropout to prevent overfitting
Flatten and connect to Dense layers
Step 4: Training the Model
Feed data in batches
Use loss function (like cross-entropy)
Optimize using backpropagation + optimizer (like Adam)
Adjust weights over several epochs
Step 5: Evaluation
Test the model on unseen data
Use metrics like Accuracy, Precision, Recall, F1-Score
Visualize using confusion matrix
Step 6: Deployment
Convert model to suitable format (e.g., ONNX, TensorFlow Lite)
Deploy on web, mobile, or edge devices
Summary
Conv2D uses filters (kernels) to extract image features.
More filters = better feature detection.
The CNN pipeline takes raw image data, learns features, and gives powerful predictions.
If this helped you, let me know! Or feel free to share your experience learning CNNs!
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Letβs break it down from basic to advanced.
1. What is Conv2D?
Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.
2. What is a Kernel (or Filter)?
A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.
A 3x3 kernel means the filter looks at 3x3 chunks of the image.
The kernel detects patterns like edges, textures, etc.
Example:
A vertical edge detection kernel might look like:
[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]
3. What Are Filters in Conv2D?
In CNNs, we donβt use just one filterβwe use multiple filters in a single Conv2D layer.
Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).
So if you have 32 filters in the Conv2D layer, youβll get 32 feature maps.
More Filters = More Features = More Learning Power
4. Kernel Size and Its Impact
Smaller kernels (e.g., 3x3) are most common; they capture fine details.
Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.
Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.
5. Life Cycle of a CNN Model (From Data to Evaluation)
Letβs visualize how a CNN model works from start to finish:
Step 1: Data Collection
Images are gathered and labeled (e.g., cat vs dog).
Step 2: Preprocessing
Resize images
Normalize pixel values
Data augmentation (flipping, rotation, etc.)
Step 3: Model Building (Conv2D layers)
Add Conv2D + Activation (ReLU)
Use Pooling layers (MaxPooling2D)
Add Dropout to prevent overfitting
Flatten and connect to Dense layers
Step 4: Training the Model
Feed data in batches
Use loss function (like cross-entropy)
Optimize using backpropagation + optimizer (like Adam)
Adjust weights over several epochs
Step 5: Evaluation
Test the model on unseen data
Use metrics like Accuracy, Precision, Recall, F1-Score
Visualize using confusion matrix
Step 6: Deployment
Convert model to suitable format (e.g., ONNX, TensorFlow Lite)
Deploy on web, mobile, or edge devices
Summary
Conv2D uses filters (kernels) to extract image features.
More filters = better feature detection.
The CNN pipeline takes raw image data, learns features, and gives powerful predictions.
If this helped you, let me know! Or feel free to share your experience learning CNNs!
#DeepLearning #ComputerVision #CNNs #Conv2D #MachineLearning #AI #NeuralNetworks #DataScience #ModelTraining #ImageProcessing
Please open Telegram to view this post
VIEW IN TELEGRAM
π13β€3π―2
Dive deep into the world of Transformers with this comprehensive PyTorch implementation guide. Whether you're a seasoned ML engineer or just starting out, this resource breaks down the complexities of the Transformer model, inspired by the groundbreaking paper "Attention Is All You Need".
https://www.k-a.in/pyt-transformer.html
This guide offers:
By following along, you'll gain a solid understanding of how Transformers work and how to implement them from scratch.
#MachineLearning #DeepLearning #PyTorch #Transformer #AI #NLP #AttentionIsAllYouNeed #Coding #DataScience #NeuralNetworksο»Ώ
Please open Telegram to view this post
VIEW IN TELEGRAM
π3
Four best-advanced university courses on NLP & LLM to advance your skills:
1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr
2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v
3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y
4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4
#LLM #python #AI #Agents #RAG #NLP
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr
2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v
3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y
4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4
#LLM #python #AI #Agents #RAG #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
π10β€3
Full PyTorch Implementation of Transformer-XL
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
π7