Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
67 videos
143 files
787 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and Rβ€”your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
πŸ“‚ 8 Steps to Mastering MLOps
βœ… For data scientists


⏯️ Introduction to MLOps

πŸ“Ž MLOps Zoomcamp

πŸ“Ž Neptune Blog

βž–βž–βž–βž–βž–βž–

2️⃣ Model Management

πŸ“Ž ML Model Registry

πŸ“Ž ML Experiment Tracking

πŸ“Ž Experiment Tracking

βž–βž–βž–βž–βž–βž–

3️⃣ Building a pipeline of models

πŸ“Ž Building End-to-End ML Pipelines

πŸ“Ž Orchestration Tools

πŸ“Ž Orchestration & ML Pipelines

βž–βž–βž–βž–βž–βž–

4️⃣ Monitoring models

πŸ“Ž Evidently AI Blog

πŸ“Ž NannyML Blog

πŸ“Ž Model Monitoring

βž–βž–βž–βž–βž–βž–

5️⃣ Introduction to Docker

πŸ“Ž Docker Tutorial

βž–βž–βž–βž–βž–βž–

6️⃣ Designing ML systems

πŸ“Ž Designing ML Systems

πŸ“Ž ML System Design Patterns

πŸ“Ž ML System Design Interview

βž–βž–βž–βž–βž–βž–

7️⃣ Sample projects

πŸ“Ž Evidently AI Database

πŸ“Ž LLMOps Case Studies

βž–βž–βž–βž–βž–βž–

8️⃣ Comprehensive roadmap

πŸ“Ž MLOps Roadmap 2024

#MLOps #MachineLearning #DataScience #AI #ModelMonitoring #MLPipelines #Docker #MLSystemDesign #ExperimentTracking #LLMOps #NeuralNetworks #DeepLearning #AITools #MLProjects #MLOpsRoadmap


⚑️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘15πŸ”₯2❀1
@Codeprogrammer Cheat Sheet Numpy.pdf
213.7 KB
This checklist covers the essentials of NumPy in one place, helping you:

- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays

…and much more!

Feel free to share if you found this useful, and let me know in the comments if I missed anything!

⚑️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟

#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
❀9πŸ‘8
Master Machine Learning in Just 20 Days.1745724742524
30.8 MB
Title:
Master Machine Learning in Just 20 Days - Your Ultimate Guide! πŸ”₯

Description:
Struggling to break into Data Science or ace ML interviews at top product-based companies?

This 20-day roadmap covers ML basics to advanced topics like tuning, deep learning, and deployment with top resources and practice questions!

What’s Inside:

βœ… Supervised & Unsupervised Learning – Regression, Classification, Clustering
βœ… Deep Learning & Neural Networks – CNNs, RNNs, LSTMs
βœ… End-to-End ML Projects – Data Preprocessing, Feature Engineering, Deployment
βœ… Model Optimization – Hyperparameter Tuning, Ensemble Methods
βœ… Real-World ML Applications – NLP, AutoML, Scalable ML Systems

#MachineLearning #DeepLearning #DataScience #ArtificialIntelligence #MLEngineering #CareerGrowth #MLRoadmap

By: t.me/HusseinSheikho βœ…

πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘10❀2πŸ‘Ž1πŸ‘¨β€πŸ’»1
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘11πŸŽ‰1
Mastering CNNs: From Kernels to Model Evaluation

If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Let’s break it down from basic to advanced.

1. What is Conv2D?

Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.

2. What is a Kernel (or Filter)?

A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.

A 3x3 kernel means the filter looks at 3x3 chunks of the image.

The kernel detects patterns like edges, textures, etc.


Example:
A vertical edge detection kernel might look like:

[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]

3. What Are Filters in Conv2D?

In CNNs, we don’t use just one filterβ€”we use multiple filters in a single Conv2D layer.

Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).

So if you have 32 filters in the Conv2D layer, you’ll get 32 feature maps.

More Filters = More Features = More Learning Power

4. Kernel Size and Its Impact

Smaller kernels (e.g., 3x3) are most common; they capture fine details.

Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.

Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.

5. Life Cycle of a CNN Model (From Data to Evaluation)

Let’s visualize how a CNN model works from start to finish:

Step 1: Data Collection

Images are gathered and labeled (e.g., cat vs dog).

Step 2: Preprocessing

Resize images

Normalize pixel values

Data augmentation (flipping, rotation, etc.)

Step 3: Model Building (Conv2D layers)

Add Conv2D + Activation (ReLU)

Use Pooling layers (MaxPooling2D)

Add Dropout to prevent overfitting

Flatten and connect to Dense layers

Step 4: Training the Model

Feed data in batches

Use loss function (like cross-entropy)

Optimize using backpropagation + optimizer (like Adam)

Adjust weights over several epochs

Step 5: Evaluation

Test the model on unseen data

Use metrics like Accuracy, Precision, Recall, F1-Score

Visualize using confusion matrix

Step 6: Deployment

Convert model to suitable format (e.g., ONNX, TensorFlow Lite)

Deploy on web, mobile, or edge devices

Summary

Conv2D uses filters (kernels) to extract image features.

More filters = better feature detection.

The CNN pipeline takes raw image data, learns features, and gives powerful predictions.

If this helped you, let me know! Or feel free to share your experience learning CNNs!

#DeepLearning #ComputerVision #CNNs #Conv2D #MachineLearning #AI #NeuralNetworks #DataScience #ModelTraining #ImageProcessing


πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘13❀3πŸ’―2
πŸš€ Master the Transformer Architecture with PyTorch! 🧠

Dive deep into the world of Transformers with this comprehensive PyTorch implementation guide. Whether you're a seasoned ML engineer or just starting out, this resource breaks down the complexities of the Transformer model, inspired by the groundbreaking paper "Attention Is All You Need".

πŸ”— Check it out here:
https://www.k-a.in/pyt-transformer.html

This guide offers:

🌟 Detailed explanations of each component of the Transformer architecture.

🌟 Step-by-step code implementations in PyTorch.

🌟 Insights into the self-attention mechanism and positional encoding.

By following along, you'll gain a solid understanding of how Transformers work and how to implement them from scratch.

#MachineLearning #DeepLearning #PyTorch #Transformer #AI #NLP #AttentionIsAllYouNeed #Coding #DataScience #NeuralNetworks
ο»Ώ

πŸ’― BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟

πŸ§ πŸ’»πŸ“Š
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘3
Top 100+ questions%0A %22Google Data Science Interview%22.pdf
16.7 MB
πŸ’― Top 100+ Google Data Science Interview Questions

🌟 Essential Prep Guide for Aspiring Candidates

Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.

To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.

This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.

#DataScience #GoogleInterview #InterviewPrep #MachineLearning #SQL #Statistics #ProductAnalytics #Python #CareerGrowth


https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘17❀2
@CodeProgrammer Matplotlib.pdf
4.3 MB
πŸ’― Mastering Matplotlib in 20 Days

The Complete Visual Guide for Data Enthusiasts

Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.

This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.

#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCode
ο»Ώ
https://t.me/addlist/0f6vfFbEMdAwODBk 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘12❀1πŸ’―1
Introduction to Machine Learning” by Alex Smola and S.V.N.

Vishwanathan is a foundational textbook that offers a comprehensive and mathematically rigorous introduction to core concepts in machine learning. The book covers key topics including supervised and unsupervised learning, kernels, graphical models, optimization techniques, and large-scale learning. It balances theory and practical application, making it ideal for graduate students, researchers, and professionals aiming to deepen their understanding of machine learning fundamentals and algorithmic principles.

PDF:
https://alex.smola.org/drafts/thebook.pdf

#MachineLearning #AI #DataScience #MLAlgorithms #DeepLearning #MathForML #MLTheory #MLResearch #AlexSmola #SVNVishwanathan
πŸ‘4❀1
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘6πŸ’―4