The Hundred-Page Language Models Book
Read it:
https://github.com/aburkov/theLMbook
Read it:
https://github.com/aburkov/theLMbook
#LLM #NLP #ML #AI #PYTHON #PYTORCH
https://t.me/DataScienceM
👍7
Generative AI for beginners by Microsoft
21 Lessons teaching everything you need to know to start building Generative AI applications
Enroll Free: https://github.com/microsoft/generative-ai-for-beginners
21 Lessons teaching everything you need to know to start building Generative AI applications
Enroll Free: https://github.com/microsoft/generative-ai-for-beginners
#GenerativeAI #LLM #GAN #PYTHON #PYTORCH #ML #DEEPLEARNING #RAG
https://t.me/CodeProgrammer
👍13❤4🔥2
Pen and Paper Exercises in MachineLearning
Free 211-page PDF: arxiv.org/abs/2206.13446
GitHub: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
Free 211-page PDF: arxiv.org/abs/2206.13446
GitHub: https://github.com/michaelgutmann/ml-pen-and-paper-exercises
#DataScientist #AI #ML #DataScience #LLM #PYTHON #PYTORCH #DEEPLEARNING #GenerativeAI
https://t.me/CodeProgrammer
👍15❤5
course lecture on building Transformers from first principles:
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammer✅
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥2
Master PyTorch Faster with These Free Resources!
Whether you're just getting started with PyTorch or looking to refresh your deep learning skills, these two resources are all you need:
1. PyTorch Cheatsheet
A concise reference guide packed with essential PyTorch commands and patterns. Perfect for quick look-ups during development.
Download:
https://www.dropbox.com/scl/fi/e4xngykrfoubiw3xnd6fz/PyTorch-Cheatsheet.pdf?rlkey=vgx38ckps7aie120imgozgq4g&e=2&st=hgs06d4t&dl=0
2. Learn PyTorch Deep Learning with Hands-On Code
A beginner-friendly PDF with practical examples to help you build and train deep learning models using PyTorch from scratch.
Download:
https://www.dropbox.com/scl/fi/lfo7r6fnd8wjm3gp0jteh/Learn-PyTorch-Deep-Learning-with-Hands-On-Code.pdf?rlkey=mg9cxg41yerouzp0rklm8hqa2&e=2&st=c7k7rgay&dl=0
Save them, share them, and start building smarter models today!
#PyTorch #DeepLearning #AIResources #MachineLearning #Python #Cheatsheet #HandsOnAI
⚡️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Whether you're just getting started with PyTorch or looking to refresh your deep learning skills, these two resources are all you need:
1. PyTorch Cheatsheet
A concise reference guide packed with essential PyTorch commands and patterns. Perfect for quick look-ups during development.
Download:
https://www.dropbox.com/scl/fi/e4xngykrfoubiw3xnd6fz/PyTorch-Cheatsheet.pdf?rlkey=vgx38ckps7aie120imgozgq4g&e=2&st=hgs06d4t&dl=0
2. Learn PyTorch Deep Learning with Hands-On Code
A beginner-friendly PDF with practical examples to help you build and train deep learning models using PyTorch from scratch.
Download:
https://www.dropbox.com/scl/fi/lfo7r6fnd8wjm3gp0jteh/Learn-PyTorch-Deep-Learning-with-Hands-On-Code.pdf?rlkey=mg9cxg41yerouzp0rklm8hqa2&e=2&st=c7k7rgay&dl=0
Save them, share them, and start building smarter models today!
#PyTorch #DeepLearning #AIResources #MachineLearning #Python #Cheatsheet #HandsOnAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤2
Dive deep into the world of Transformers with this comprehensive PyTorch implementation guide. Whether you're a seasoned ML engineer or just starting out, this resource breaks down the complexities of the Transformer model, inspired by the groundbreaking paper "Attention Is All You Need".
https://www.k-a.in/pyt-transformer.html
This guide offers:
By following along, you'll gain a solid understanding of how Transformers work and how to implement them from scratch.
#MachineLearning #DeepLearning #PyTorch #Transformer #AI #NLP #AttentionIsAllYouNeed #Coding #DataScience #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Full PyTorch Implementation of Transformer-XL
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.
The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.
Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html
#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools
https://t.me/CodeProgrammer
👍7
rnn.pdf
5.6 MB
🔍 Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!💡
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!
#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍3