Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
67 videos
143 files
787 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Running a Neural Network Model in OpenCV

Many machine learning models have been developed, each with strengths and weaknesses. This catalog is not complete without neural network models. In OpenCV, you can use a neural network model developed using another framework. In this post, you will learn about the workflow of applying a neural network in OpenCV. Specifically, you will learn:

🏐 What OpenCV can use in its neural network model
🏐 How to prepare a neural network model for OpenCV

Read: https://machinelearningmastery.com/running-a-neural-network-model-in-opencv/

#NeuralNetworks #OpenCV #MachineLearning #AI #DeepLearning #ModelDeployment #ComputerVision #TechTutorials #DataScience #MLModels

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102
A Complete Course to Learn Robotics and Perception

Notebook-based book "Introduction to Robotics and Perception" by Frank Dellaert and Seth Hutchinson

github.com/gtbook/robotics

roboticsbook.org/intro.html

#Robotics #Perception #AI #DeepLearning #ComputerVision #RoboticsCourse #MachineLearning #Education #RoboticsResearch #GitHub


⚡️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍122
Mastering CNNs: From Kernels to Model Evaluation

If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Let’s break it down from basic to advanced.

1. What is Conv2D?

Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.

2. What is a Kernel (or Filter)?

A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.

A 3x3 kernel means the filter looks at 3x3 chunks of the image.

The kernel detects patterns like edges, textures, etc.


Example:
A vertical edge detection kernel might look like:

[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]

3. What Are Filters in Conv2D?

In CNNs, we don’t use just one filter—we use multiple filters in a single Conv2D layer.

Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).

So if you have 32 filters in the Conv2D layer, you’ll get 32 feature maps.

More Filters = More Features = More Learning Power

4. Kernel Size and Its Impact

Smaller kernels (e.g., 3x3) are most common; they capture fine details.

Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.

Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.

5. Life Cycle of a CNN Model (From Data to Evaluation)

Let’s visualize how a CNN model works from start to finish:

Step 1: Data Collection

Images are gathered and labeled (e.g., cat vs dog).

Step 2: Preprocessing

Resize images

Normalize pixel values

Data augmentation (flipping, rotation, etc.)

Step 3: Model Building (Conv2D layers)

Add Conv2D + Activation (ReLU)

Use Pooling layers (MaxPooling2D)

Add Dropout to prevent overfitting

Flatten and connect to Dense layers

Step 4: Training the Model

Feed data in batches

Use loss function (like cross-entropy)

Optimize using backpropagation + optimizer (like Adam)

Adjust weights over several epochs

Step 5: Evaluation

Test the model on unseen data

Use metrics like Accuracy, Precision, Recall, F1-Score

Visualize using confusion matrix

Step 6: Deployment

Convert model to suitable format (e.g., ONNX, TensorFlow Lite)

Deploy on web, mobile, or edge devices

Summary

Conv2D uses filters (kernels) to extract image features.

More filters = better feature detection.

The CNN pipeline takes raw image data, learns features, and gives powerful predictions.

If this helped you, let me know! Or feel free to share your experience learning CNNs!

#DeepLearning #ComputerVision #CNNs #Conv2D #MachineLearning #AI #NeuralNetworks #DataScience #ModelTraining #ImageProcessing


💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍133💯2
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks — full tutorials and code available on GitHub:

1️⃣ Text-Based Applications

1.1. Building a Chatbot Using HuggingFace Open Source Models

https://lnkd.in/dku3bigK

1.2. Building a Text Translation System using Meta NLLB Open-Source Model

https://lnkd.in/dgdjaFds

2️⃣ Speech-Based Applications

2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model

https://lnkd.in/dbgQgDyn

2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio

https://lnkd.in/dcbp-8fN

2.3. Building Text-to-Speech Systems Using VITS & ArTST Models

https://lnkd.in/dwFcQ_X5

3️⃣ Image-Based Applications

3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model

https://lnkd.in/dnk6epGB

3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide

https://lnkd.in/d573SvYV

3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)

https://lnkd.in/dFavEdHS

3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio

https://lnkd.in/d9jjJu_g

4️⃣ Vision Language Applications

4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models

https://lnkd.in/dHNFaHFV

4.2. Building an Image Captioning System using Salesforce Blip Model

https://lnkd.in/dh36iDn9

4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models

https://lnkd.in/d7fsJEAF

➡️ You can find the articles and the codes for each article in this GitHub repo:

https://lnkd.in/dG5jfBwE

#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13💯1
This book covers foundational topics within computer vision, with an image processing and machine learning perspective. We want to build the reader’s intuition and so we include many visualizations. The audience is undergraduate and graduate students who are entering the field, but we hope experienced practitioners will find the book valuable as well.

Our initial goal was to write a large book that provided a good coverage of the field. Unfortunately, the field of computer vision is just too large for that. So, we decided to write a small book instead, limiting each chapter to no more than five pages. Such a goal forced us to really focus on the important concepts necessary to understand each topic. Writing a short book was perfect because we did not have time to write a long book and you did not have time to read it. Unfortunately, we have failed at that goal, too.

Read it online: https://visionbook.mit.edu/

#ComputerVision #ImageProcessing #MachineLearning #CVBook #VisualLearning #AIResources #ComputerVisionBasics #MLForVision #AcademicResources #LearnComputerVision #AIIntuition #DeepLearning


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
3
This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.

1️⃣ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37

ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0

Crack the ML Coding Q&A
https://shorturl.at/CDW08

Deep Learning Interview Q&A
https://shorturl.at/lHPZ6

Top LLMs Interview Q&A
https://shorturl.at/wGRSZ

Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi

Part 2
https://rb.gy/hqgkbg

Part 3
https://rb.gy/5z87be

2️⃣ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1

SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH

Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9

Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n

How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA

Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE

SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw

6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q

3️⃣ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq

Part 2
https://lnkd.in/gATY4rTT

Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5

Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A

Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN

Python Interview Q&A
https://lnkd.in/gcaXc_JE

5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd

4️⃣ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5

Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8

Introduction to A/B Testing
https://lnkd.in/g35Jihw6

Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q

5️⃣ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk

Part 2
https://lnkd.in/gQhXnKwJ

Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp

Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj

🔜 All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT

#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍2💯2
Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.

Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.

What makes Deep Learning so powerful?

Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.

#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
6