The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.
Enroll Free: https://introtodeeplearning.com/
Enroll Free: https://introtodeeplearning.com/
#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7
10 GitHub repos to build a career in AI engineering:
(100% free step-by-step roadmap)
1️⃣ ML for Beginners by Microsoft
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
2️⃣ AI for Beginners by Microsoft
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
3️⃣ Neural Networks: Zero to Hero
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
4️⃣ DL Paper Implementations
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
5️⃣ Made With ML
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
6️⃣ Hands-on LLMs
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
7️⃣ Advanced RAG Techniques
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
8️⃣ AI Agents for Beginners by Microsoft
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
9️⃣ Agents Towards Production
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
🔟 AI Engg. Hub
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
(100% free step-by-step roadmap)
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6
Auto-Encoder & Backpropagation by hand ✍️ lecture video ~ 📺 https://byhand.ai/cv/10
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
This media is not supported in your browser
VIEW IN TELEGRAM
GPU by hand ✍️ I drew this to show how a GPU speeds up an array operation of 8 elements in parallel over 4 threads in 2 clock cycles. Read more 👇
CPU
• It has one core.
• Its global memory has 120 locations (0-119).
• To use the GPU, it needs to copy data from the global memory to the GPU.
• After GPU is done, it will copy the results back.
GPU
• It has four cores to run four threads (0-3).
• It has a register file of 28 locations (0-27)
• This register file has four banks (0-3).
• All threads share the same register file.
• But they must read/write using the four banks.
• Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
CPU
• It has one core.
• Its global memory has 120 locations (0-119).
• To use the GPU, it needs to copy data from the global memory to the GPU.
• After GPU is done, it will copy the results back.
GPU
• It has four cores to run four threads (0-3).
• It has a register file of 28 locations (0-27)
• This register file has four banks (0-3).
• All threads share the same register file.
• But they must read/write using the four banks.
• Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3