Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
68 videos
143 files
788 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Free Artificial Intelligence Course for Beginners from Microsoft with Codes and Videos

https://github.com/microsoft/generative-ai-for-beginners

#AI #Microsoft #LearnAI #TechForBeginners #FreeCourse

Motivational Text:
Embark on your journey into the world of Artificial Intelligence with this free beginner-friendly course from Microsoft! Whether you're new to AI or looking to strengthen your foundational knowledge, this course offers step-by-step guidance, practical codes, and video tutorials to help you master the basics of generative AI. Start learning today and unlock your potential in the ever-evolving field of technology! ⭐️💻 #AIForEveryone #TechEducation #FutureSkills

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8💯21
🌟 Dive into the world of Transformers and Self-Attention with one of YouTube's best-kept secrets! 🧠 Nobody breaks down complex AI concepts like Professor Bryce – his passion for teaching and dedication to clarity make every lesson unforgettable. 💡📚

Whether you're an AI enthusiast, a machine learning student, or just curious about cutting-edge tech, this video is a *must-watch*. Get ready to level up your understanding of how Transformers work in the most engaging way possible! 🚀

🔗 Watch here: YouTube Video

#AI #MachineLearning #DeepLearning #Transformers #SelfAttention #ArtificialIntelligence #TechEducation #LearnAI

https://t.me/CodeProgrammer
👍62
The Big Book of Large Language Models by Damien Benveniste

Chapters:
1⃣ Introduction

🔢 Language Models Before Transformers

🔢 Attention Is All You Need: The Original Transformer Architecture

🔢 A More Modern Approach To The Transformer Architecture

🔢 Multi-modal Large Language Models

🔢 Transformers Beyond Language Models

🔢 Non-Transformer Language Models

🔢 How LLMs Generate Text

🔢 From Words To Tokens

1⃣0⃣ Training LLMs to Follow Instructions

1⃣1⃣ Scaling Model Training

1⃣🔢 Fine-Tuning LLMs

1⃣🔢 Deploying LLMs

Read it: https://book.theaiedge.io/

#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍174👎1
🔰 How to become a data scientist in 2025?

👨🏻‍💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


🔢 Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

Linear algebra: matrices, vectors, eigenvalues.

🔗 Course: MIT 18.06 Linear Algebra


Calculus: derivative, integral, optimization.

🔗 Course: MIT Single Variable Calculus


Statistics and probability: Bayes' theorem, hypothesis testing.

🔗 Course: Statistics 110



🔢 Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

Python: Pandas, NumPy, Matplotlib libraries

🔗 Course: FreeCodeCamp Python Course

SQL language: Join commands, Window functions, query optimization.

🔗 Course: Stanford SQL Course

Data structures and algorithms: arrays, linked lists, trees.

🔗 Course: MIT Introduction to Algorithms



🔢 Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

Data cleaning: Working with missing values ​​and detecting outliers.

🔗 Course: Data Cleaning

Data visualization: Matplotlib, Seaborn, Tableau

🔗 Course: Data Visualization Tutorial



🔢 Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

Supervised learning: regression, classification.

Unsupervised learning: clustering, PCA, anomaly detection.

Deep learning: neural networks, CNN, RNN


🔗 Course: CS229: Machine Learning



🔢 Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

Big Data Tools: Hadoop, Spark, Dask

Cloud platforms: AWS, GCP, Azure

🔗 Course: Data Engineering



🔢 Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

Kaggle competitions: solving real-world challenges.

End-to-End projects: data collection, modeling, implementation.

GitHub: Publish your projects on GitHub.

🔗 Platform: Kaggle🔗 Platform: ods.ai



🔢 Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

MLOps training: model versioning, monitoring, model retraining.

Deployment models: Flask, FastAPI, Docker

🔗 Course: Stanford MLOps Course



🔢 Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

Read scientific articles: arXiv, Google Scholar

Connect with the data community:

🔗 Site: Papers with code
🔗 Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515👏1
🚀 EXCITING UPDATE ALERT 🚀

A brand-new, FREE course on LLM evaluations has just been launched in collaboration with Elvis Saravia! Dive into the world of AI model assessments and elevate your skills with cutting-edge insights.

📚 What’s Included?
- ⚖️ In-depth coverage of LLM-as-a-judge metrics, LLM unit testing, monitoring, and beyond
- 🤖 Hands-on experience with real-world projects, such as building a YouTube search agent
- 🎉 Access to open-source models via LiteLLM

Whether you're an AI enthusiast, developer, or researcher, this course is designed to empower you with practical knowledge and tools. Don’t miss out—enroll now to secure your spot! 👇
https://www.comet.com/site/llm-course/

#AI #MachineLearning #LLM #OpenSource #FreeCourse #TechEducation #DataScience #ArtificialIntelligence #LearnAI #LiteLLM #ElvisSaravia

https://t.me/CodeProgrammer
👍65
deep learning book.pdf
14.5 MB
A beautiful booklet for learning deep learning in a smooth and concise way without diving into the world of complexity.

I highly recommend reading this enjoyable booklet.

#DeepLearning #AI #MachineLearning #LearnAI #DeepLearningForBeginners

🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72💯1
The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.

Enroll Free: https://introtodeeplearning.com/

#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
7