This media is not supported in your browser
VIEW IN TELEGRAM
Трёхфазный ток вырабатывается синхронным генератором. Его статор (неподвижная часть) включает три обмотки (сегмента), находящиеся в окружности со сдвигом друг от друга на 120°. Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 радиан (120°).
Основными элементами трёхфазной цепи являются:
▪️ Электростанция. Производит электроэнергию с напряжением от 1 до 35 киловольт путём преобразования энергии источника (воды, тепла или атома) в механическую.
▪️ Трёхфазный генератор. Выполняет преобразование механической энергии в электрическую с определённой мощностью, измеряемой в киловаттах, которую он может подать на потребителя.
▪️ Повышающий силовой трансформатор. Выполняет повышение величины выходного напряжения от 110 до 750 киловольт для того, чтобы передать электроэнергию на большие расстояния до населённых пунктов и городов.
▪️ Линии электропередач (ЛЭП). Опорные сооружения, на которых установлены токопровода для безопасной передачи высоковольтной энергии.
▪️ Понижающий силовой трансформатор (трансформаторные подстанции). Выполняет снижение величины выходного напряжения обратно до 1–35 киловольт для её подачи на низковольтные линии.
▪️ Приёмники — потребители трёхфазного тока — бытовые или специализированные электроприборы.
Трёхфазный переменный ток наиболее распространён и используется в промышленности, на предприятиях, в медицинских учреждениях и в частном секторе (например, в коттеджах) для питания энергозатратного оборудования или большого количества техники.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧊 Кварц используют как источник времени в кварцевых часах 📟
Принцип работы: кварцевый кристалл при пропускании через него электрического тока начинает колебаться с чрезвычайно стабильной частотой. Эти колебания преобразуются в электрические сигналы, которые затем используются для измерения времени.
Некоторые преимущества использования кварца как источника времени:
▪️Высокая точность. Благодаря стабильным колебаниям кварцевого кристалла кварцевые часы могут обеспечивать точность хода с отклонением всего несколько секунд в месяц.
▪️Долговечность и надёжность. Кварц обладает высокой устойчивостью к физическим и химическим воздействиям, что обеспечивает долговечность и надёжность кварцевых часов.
Однако кварц подвержен старению, поэтому с течением времени часы начинают идти с меньшей точностью. На точность кварцевых часов также могут влиять температурные изменения, влажность и воздействие магнитных полей.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Принцип работы: кварцевый кристалл при пропускании через него электрического тока начинает колебаться с чрезвычайно стабильной частотой. Эти колебания преобразуются в электрические сигналы, которые затем используются для измерения времени.
Некоторые преимущества использования кварца как источника времени:
▪️Высокая точность. Благодаря стабильным колебаниям кварцевого кристалла кварцевые часы могут обеспечивать точность хода с отклонением всего несколько секунд в месяц.
▪️Долговечность и надёжность. Кварц обладает высокой устойчивостью к физическим и химическим воздействиям, что обеспечивает долговечность и надёжность кварцевых часов.
Однако кварц подвержен старению, поэтому с течением времени часы начинают идти с меньшей точностью. На точность кварцевых часов также могут влиять температурные изменения, влажность и воздействие магнитных полей.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
В 2024 году Международная команда исследователей сообщила об открытии белка цитратсинтазы в цианобактерии Synechococcus elongatus, который самоорганизуется в треугольник Серпинского, это первый известный молекулярный фрактал.
Середины сторон равностороннего треугольника T₀ соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество T₁ , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T₂, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T₀ ⊃ T₁ ⊃ T₂ ⊃... ⊃Tₙ .
Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные — в белый, то образуется треугольник Серпинского. #gif #геометрия #математика #симметрия #geometry #maths #фракталы
Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.
🐉 Кривая дракона
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
🌀 10 фракталов, которые стоит увидеть
🔺 Так выглядит фрактал
📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта
🌿 Папоротник Барнсли
📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Не знаешь на кого пойти учиться ?💥
🛑 Пройди бесплатные онлайн-курсы
🛑 Узнай о самых востребованных профессиях
🛑 Получи уникальную возможность поступить в «Алабуга Политех» после 9 или 11 класса
ПРОЙДИ КУРС ПРЯМО СЕЙЧАС!
ПРОЙДИ КУРС ПРЯМО СЕЙЧАС!
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Преимущества лазерного скальпирования микросхем включают высокую точность, скорость и возможность обработки различных материалов. Кроме того, этот метод обеспечивает минимальный контакт между инструментом и материалом, что уменьшает риск повреждения микросхемы.
Лазерное скальпирование микросхем может использоваться для создания микроэлектромеханических систем (MEMS), интегрированных оптических систем и других микроэлектронных устройств. Оно также может быть применено для ремонта поврежденных микросхем и увеличения их производительности.
В целом, лазерное скальпирование микросхем является важным инструментом в современной микроэлектронике и имеет широкий спектр применений в различных отраслях промышленности.
#gif #физика #электроника #physics #electronic #опыты #техника
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Хочешь стать Linux-экспертом?
LinuxCamp — канал системного разработчика, который поможет тебе освоить Linux, DevOps и программирование на профессиональном уровне!
— Уникальные гайды по администрированию Linux
— Продвинутые техники и рекомендации по работе в Bash
— Подробные статьи о внутреннем устройстве операционных систем
— Интересные факты и новости из мира технологий
🌐 Присоединяйся к нам и становись частью сообщества истинных гуру: LinuxCamp
LinuxCamp — канал системного разработчика, который поможет тебе освоить Linux, DevOps и программирование на профессиональном уровне!
— Уникальные гайды по администрированию Linux
— Продвинутые техники и рекомендации по работе в Bash
— Подробные статьи о внутреннем устройстве операционных систем
— Интересные факты и новости из мира технологий
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Основная причина эффекта — это практически мгновенное испарение нижней части капли при контакте с раскалённой поверхностью. В этот момент происходит образование прослойки пара, которая как бы «подвешивает» неиспарившуюся часть капли над раскалённой поверхностью, не давая жидкости вступить с ней в прямой контакт.
В повседневной жизни явление можно наблюдать при приготовлении пищи: для оценки температуры сковороды на неё брызгают водой — если температура достигла или уже выше точки Лейденфроста, вода соберётся в капли, которые будут «скользить» по поверхности металла и испаряться дольше, чем если бы это происходило в сковороде, нагретой выше точки кипения воды, но ниже точки Лейденфроста. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы
💧 Капля воды падающая на горячий металл 💥в Slow motion
💧 Эффект Лейденфроста
🚀 Что будет, если добавить жидкий газ в бутылку с водой
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Принцип технологии:
▪️ Головки с переходными элементами устанавливают и фиксируют на трубе.
▪️ Запускают генератор, который подаёт диоксид углерода или другой хладагент в нужное место.
▪️ Подача охлаждающего вещества регулируется специальными вентилями.
▪️ Дополнительно локально охладить область можно с помощью элементов Пельтье.
▪️ Чем выше скорость подачи диоксида углерода, тем меньше требуется времени и более плотной получается ледяная пробка.
Некоторые особенности технологии:
▫️Заморозка может осуществляться на стальных, чугунных, свинцовых, медных, алюминиевых, металлопластиковых и пластиковых трубах.
▫️Замораживать можно коммуникации с диаметром до 2 дюймов.
▫️Способ может оказаться неэффективным, если на внутренних стенках много твёрдых отложений, а внешняя часть закрыта теплоизоляционным материалом.
▫️Нельзя использовать технологию, если система заполнена антифризом.
▫️При проведении сварочных работ расстояние от ледяной пробки до места сварки должно быть не менее одного метра, чтобы исключить расплавление льда и разгерметизацию системы. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⛓️💥 Опыт с цепочкой: цепь сохраняет свою форму, близкую к окружности при слете со вращающегося шкива
⭕️ Задача: На шкив двигателя плотно надета цепочка. Двигатель приводят в быстрое вращение. Затем постепенно сдвигают цепочку на край шкива и, наконец, сбрасывают ее. Тогда цепочка катится как жесткий обруч по столу или по полу. Объяснить, как возникает центростремительная сила, необходимая для того, чтобы каждое звено цепочки описывало кривую? Как возникают Силы, действующие на цепочку и создающие в ней напряжения?
#физика #кинематика #меахника #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
⭕️ Задача: На шкив двигателя плотно надета цепочка. Двигатель приводят в быстрое вращение. Затем постепенно сдвигают цепочку на край шкива и, наконец, сбрасывают ее. Тогда цепочка катится как жесткий обруч по столу или по полу. Объяснить, как возникает центростремительная сила, необходимая для того, чтобы каждое звено цепочки описывало кривую? Как возникают Силы, действующие на цепочку и создающие в ней напряжения?
#физика #кинематика #меахника #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
▪️С какой первой книги вы начали изучать программирование и Computer Science ? Понравилась ли вам эта книга или нет?
▪️ Какую книгу вы считаете лучшим вариантом для начала?
▪️ Самая сложная книга, связанная с программированием, с которой вы сталкивались?
▪️Книги VS Курсы VS Метод научного тыка, пока не скомпилируется?
▪️Условный Chat GPT — добро или зло для программиста?
📝 Обсуждаем вопросы здесь
#computer_science #разработка #IT #программирование #code #coding #алгоритмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📙 Задачи по теории множеств, математической логике и теории алгоритмов [2004] И.А. Лавров, Л.Л. Максимова
💾 Скачать книгу
Теория множеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Теория множеств была создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда.
Теория множеств стала основой многих разделов математики — общей топологии, общей алгебры, функционального анализа и оказала существенное влияние на современное понимание предмета математики.
Некоторые области применения теории множеств: компьютерные науки, информационные технологии, моделирование данных, проектирование баз данных и разработка алгоритмов. #computer_science #дискретная_математика #математика #теория_множеств #math #coding #алгоритмы
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Теория множеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Теория множеств была создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда.
Теория множеств стала основой многих разделов математики — общей топологии, общей алгебры, функционального анализа и оказала существенное влияние на современное понимание предмета математики.
Некоторые области применения теории множеств: компьютерные науки, информационные технологии, моделирование данных, проектирование баз данных и разработка алгоритмов. #computer_science #дискретная_математика #математика #теория_множеств #math #coding #алгоритмы
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
+79616572047
(СБП) Сбер: +79026552832
(СБП) 💡 Physics.Math.Code // @physics_lib
Задачи_по_теории_множеств,_математической_логике_и_теории_алгоритмов.zip
4.3 MB
📙 Задачи по теории множеств, математической логике и теории алгоритмов [2004] И.А. Лавров, Л.Л. Максимова
В книге в форме задач систематически изложены основы теории множеств, математической логики и теории алгоритмов. Книга предназначена для активного изучения математической логики и смежных с ней наук. Состоит из трех частей: «Теория множеств», «Математическая логика» и «Теория алгоритмов». Задачи снабжены указаниями и ответами. Все необходимые определения сформулированы в кратких теоретических введениях к каждому параграфу. 3-е издание книги вышло в 1995 г. Сборник может быть использован как учебное пособие для математических факультетов университетов, педагогических институтов, а также в технических вузах при изучении кибернетики и информатики. Для математиков – алгебраистов, логиков и кибернетиков.
Теория алгоритмов — раздел математической логики, в котором изучаются теоретические возможности эффективных процедур вычисления (алгоритмов) и их приложения.
📝 Теория алгоритмов развивается по нескольким направлениям:
▪️ Классическая теория алгоритмов. Изучает проблемы формулировки задач в терминах формальных языков, проводит классификацию задач по классам сложности (P, NP и др.).
▪️ Теория асимптотического анализа алгоритмов. Рассматривает методы получения асимптотических оценок ресурсоёмкости или времени выполнения алгоритмов, в частности, для рекурсивных алгоритмов.
▪️ Теория практического анализа вычислительных алгоритмов. Решает задачи поиска практических критериев качества алгоритмов, разработки методики выбора рациональных алгоритмов. #computer_science #дискретная_математика #математика #теория_множеств #math #coding #алгоритмы
💡 Physics.Math.Code // @physics_lib
В книге в форме задач систематически изложены основы теории множеств, математической логики и теории алгоритмов. Книга предназначена для активного изучения математической логики и смежных с ней наук. Состоит из трех частей: «Теория множеств», «Математическая логика» и «Теория алгоритмов». Задачи снабжены указаниями и ответами. Все необходимые определения сформулированы в кратких теоретических введениях к каждому параграфу. 3-е издание книги вышло в 1995 г. Сборник может быть использован как учебное пособие для математических факультетов университетов, педагогических институтов, а также в технических вузах при изучении кибернетики и информатики. Для математиков – алгебраистов, логиков и кибернетиков.
Теория алгоритмов — раздел математической логики, в котором изучаются теоретические возможности эффективных процедур вычисления (алгоритмов) и их приложения.
📝 Теория алгоритмов развивается по нескольким направлениям:
▪️ Классическая теория алгоритмов. Изучает проблемы формулировки задач в терминах формальных языков, проводит классификацию задач по классам сложности (P, NP и др.).
▪️ Теория асимптотического анализа алгоритмов. Рассматривает методы получения асимптотических оценок ресурсоёмкости или времени выполнения алгоритмов, в частности, для рекурсивных алгоритмов.
▪️ Теория практического анализа вычислительных алгоритмов. Решает задачи поиска практических критериев качества алгоритмов, разработки методики выбора рациональных алгоритмов. #computer_science #дискретная_математика #математика #теория_множеств #math #coding #алгоритмы
💡 Physics.Math.Code // @physics_lib
📙 Математическое моделирование конвективного тепломассообмена на основе уравнений Навье-Стокса [1987] Авдуевский
💾 Скачать книгу
Тепломассообмен — дисциплина, изучающая закономерности процессов теплообмена, сопровождающихся переносом вещества, то есть массообменом. На практике тепломассообмен происходит во многих технических системах, использующих в своей работе жидкие или газообразные среды. Это котельные установки, тепловые сети, литейное производство, различное теплообменное оборудование, например, электростанций, конструкции зданий и сооружений и т. д. Сама рабочая среда при этом — чистое вещество или различные смеси и растворы — может оставаться постоянной или, меняя агрегатное состояние, осуществлять фазовые переходы, такие как испарение в паровоздушную среду, конденсация пара из смеси «пар — воздух», остывание расплавов и т. п.
#физика #численные_методы #physics #математика #гидродинамика #газодинамика #моделирование
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Тепломассообмен — дисциплина, изучающая закономерности процессов теплообмена, сопровождающихся переносом вещества, то есть массообменом. На практике тепломассообмен происходит во многих технических системах, использующих в своей работе жидкие или газообразные среды. Это котельные установки, тепловые сети, литейное производство, различное теплообменное оборудование, например, электростанций, конструкции зданий и сооружений и т. д. Сама рабочая среда при этом — чистое вещество или различные смеси и растворы — может оставаться постоянной или, меняя агрегатное состояние, осуществлять фазовые переходы, такие как испарение в паровоздушную среду, конденсация пара из смеси «пар — воздух», остывание расплавов и т. п.
#физика #численные_методы #physics #математика #гидродинамика #газодинамика #моделирование
💡 Physics.Math.Code // @physics_lib