Physics.Math.Code
137K subscribers
5.11K photos
1.81K videos
5.78K files
4.2K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔺 Так выглядит фрактал

Сложно перечислить все сферы деятельности, в которых применяются фракталы. Их кажущаяся сложность обманчива: все фракталы состоят из простейших фигур. В разных масштабах каждый элемент фрактала подобен друг другу. Одними из первых с фракталами столкнулись картографы, пытавшиеся точно воспроизвести линию морских побережий и убедившиеся в том, что для этого нужны бесконечные измерения.
#gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

💡 Physics.Math.Code
// @physics_lib
Media is too big
VIEW IN TELEGRAM
👩‍💻 Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, математическое описание которого опубликовал польский математик Вацлав Серпинский в 1915 году. Также известен как «салфетка» Серпинского. На основе треугольника Серпинского могут быть изготовлены многодиапазонные фрактальные антенны. Образования, похожие на треугольник Серпинского, возникают при эволюции многих конечных автоматов, подобных игре Жизнь.

В 2024 году Международная команда исследователей сообщила об открытии белка цитратсинтазы в цианобактерии Synechococcus elongatus, который самоорганизуется в треугольник Серпинского, это первый известный молекулярный фрактал.

Середины сторон равностороннего треугольника T₀ соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество T₁ , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T₂, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T₀ ⊃ T₁ ⊃ T₂ ⊃... ⊃Tₙ .

Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные — в белый, то образуется треугольник Серпинского. #gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🟡 Демонстрация того, как кривые на первый взгляд фигуры оказываются построены исключительно из прямых линий. Здесь речь идет о гиперболоиде вращения. В геометрии гиперболоид вращения, иногда называемый круговым гиперболоидом, представляет собой поверхность, образованную вращением гиперболы вокруг одной из ее главных осей. Гиперболоидные конструкции — сооружения в форме однополостного гиперболоида или гиперболического параболоида. Такие конструкции, несмотря на свою кривизну, строятся из прямых балок. Однополостный гиперболоид и гиперболический параболоид — дважды линейчатые поверхности, то есть через любую точку такой поверхности можно провести две пересекающиеся прямые, которые будут целиком принадлежать поверхности. Вдоль этих прямых и устанавливаются балки, образующие характерную решётку. Такая конструкция является жёсткой: если балки соединить шарнирно, гиперболоидная конструкция всё равно будет сохранять свою форму под действием внешних сил. Для высоких сооружений основную опасность несёт ветровая нагрузка, а у решётчатой конструкции она невелика. Эти особенности делают гиперболоидные конструкции прочными, несмотря на невысокую материалоёмкость. #gif #геометрия #физика #математика #math #geometry #алгебра #maths

💡 Physics.Math.Code
// @physics_lib
Media is too big
VIEW IN TELEGRAM
⚙️ График, который получается в результате таких манипуляций — трохоида, у которой опорная поверхность не плоская, а имеет переменный радиус кривизны. По сути это совокупность эпитрохоид, построенных на поверхности с переменным радиусом кривизны.

Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)

Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)

где m = r/R , R — радиус неподвижной окружности (опорная поверхность), r — радиус катящейся окружности. h — расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).
Ну а если тут положить R → ∞ и h → R , то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.

Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?

Красота параметрических кривых

⭕️ Точки пересечения кругов на воде движутся по гиперболе

🕑 Экстремальная задача на смекалку

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📐 Геометрическая задача из Турции для разминки наших подписчиков. Всё, что дано, — есть на рисунке. Определите угол ∠A — ?

#разборы_задач #олимпиады #математика #геометрия #math #geometry

✏️ Подсказка здесь

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Геометрия_Планиметрия_и_Стереометрия_Киселев_А_П.zip
32.7 MB
📚 Геометрия, планиметрия, стереометрия - учебник [1952 — 2013] Киселев

В 2002 г. исполнилось 150 лет со дня рождения А.П. Киселева. Его «Элементарная геометрия» вышла в 1892 г. В наше время книги Киселева стали библиографической редкостью и неизвестны молодым учителям. А между тем дальнейшее совершенствование преподавания математики невозможно без личного знакомства каждого учителя с учебниками, некогда считавшимися эталонными. Именно по этой причине и предпринимается переиздание «Геометрии» Киселева.

Учебник элементарной геометрии Киселёва был долгое время самым распространенным учебником геометрии. Его главные достоинства: простота и отчётливость языка и доступность для понимания учащимися средних школ.

А. П. Киселёв — это эпоха в педагогике и преподавании математики в средней школе. Его учебники математики установили рекорд долговечности, оставаясь свыше 60 лет самыми стабильными учебниками в отечественной школе, и на многие десятилетия определили уровень математической подготовки нескольких поколений граждан нашей страны.

#геометрия #математика #math #geometry #алгебра #подборка_книг

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔹🔶 Как два квадрата создают два одинаковых треугольника? 🔺=🔺

Если два квадрата имеют общий угол, то между ними образуются два треугольника – один сверху, другой снизу. И, что интересно, их площади всегда одинаковые, независимо от угла поворота этих квадратов относительно общей вершины.

💡 Сможете доказать? Если сомневаетесь, то подсказка ниже.

#gif #математика #геометрия #топология #geometry #задачи #олимпиады #разбор_задач

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Кривая дракона — общее название для некоторых фрактальных кривых, которые могут быть аппроксимированы рекурсивными методами, такими как L-системы. Дракон Хартера, также известный как дракон Хартера — Хейтуэя. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American». Многие из свойств фрактала были описаны Чендлером Дэвисом (Chandler Davis) и Дональдом Кнутом.

👩‍💻 Множество Мандельброта

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

🌀 10 фракталов, которые стоит увидеть

🔺 Так выглядит фрактал

👩‍💻 Треугольник Серпинского

📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

🌿 Папоротник Барнсли

📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли

#фракталы #математика #геометрия #math #physics #geometry #science

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🟠 Если длина дуги окружности равна по длине ее радиусу, получившийся угол равен одному радиану

Радиан
(русское обозначение: рад, международное: rad; от лат. radius — луч, радиус) — угол, соответствующий дуге, длина которой равна её радиус. Поскольку длина дуги окружности пропорциональна её угловой мере и радиусу, длина дуги окружности радиуса R и угловой величины α, измеренной в радианах, равна α ∙ R. Так как величина угла, выраженная в радианах, равна отношению длины дуги окружности (м) к длине её радиуса (м), угол в радианном измерении — величина безразмерная. #gif #геометрия #физика #математика #math #physics #geometry
a[°] = α[рад] × (360° / (2π)) или α[рад] × (180° / π),
α[рад] = a[°] : (180° / π) = a[°] × (π / 180°),
где α[рад] — угол в радианах, a[°] — угол в градусах.

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Сравнение графиков: Декартовы координаты (Cartesian coordinates) и полярные координаты

#математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Торический узел — специальный вид узлов, лежащих на поверхности незаузлённого тора в ℝ³. Торическое зацепление — зацепление, лежащее на поверхности тора. Каждый торический узел определяется парой взаимно простых целых чисел p и q. Торическое зацепление возникает, когда p и q не взаимно просты. Торический узел является тривиальным тогда и только тогда, когда либо p, либо q равны 1 или -1. Простейшим нетривиальным примером является (2,3)-торический узел, известный также как трилистник.
Обычно используется соглашение, что (p, q) — торический узел вращается q раз вокруг оси тора и p раз вокруг оси вращения тора.

(p, q) — торический узел может быть задана параметризацией:
x = r⋅cos(p⋅φ)
y = r⋅sin(p⋅φ)
z = - sin(q⋅φ)
где r = cos(q⋅φ) + 2 и 0 < φ < 2π.

Он лежит на поверхности тора, задаваемого формулой (r - 2)² + z² = 1 (в цилиндрических координатах).
Параметризации могут быть другие, потому что узлы определены с точностью до непрерывной деформации. #gif #геометрия #физика #математика #math #geometry #алгебра #maths

📱 Анимация параметрической кривой в 3D декартовой системе координат с помощью Python

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
👩‍💻 Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, математическое описание которого опубликовал польский математик Вацлав Серпинский в 1915 году. Также известен как «салфетка» Серпинского. На основе треугольника Серпинского могут быть изготовлены многодиапазонные фрактальные антенны. Образования, похожие на треугольник Серпинского, возникают при эволюции многих конечных автоматов, подобных игре Жизнь.

В 2024 году Международная команда исследователей сообщила об открытии белка цитратсинтазы в цианобактерии Synechococcus elongatus, который самоорганизуется в треугольник Серпинского, это первый известный молекулярный фрактал.

Середины сторон равностороннего треугольника T₀ соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество T₁ , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T₂, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T₀ ⊃ T₁ ⊃ T₂ ⊃... ⊃Tₙ .

Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные — в белый, то образуется треугольник Серпинского. #gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

🐉 Кривая дракона

👩‍💻 Множество Мандельброта

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

🌀 10 фракталов, которые стоит увидеть

🔺 Так выглядит фрактал

👩‍💻 Треугольник Серпинского

📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

🌿 Папоротник Барнсли

📘 Фракталы повсюду Второе издание [2000] Майкл Ф. Барнсли

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Красота параметрических кривых

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр. Параметризация – метод представления кривой, поверхности или объекта в пространстве с помощью одной или нескольких переменных, называемых параметрами. Параметризация позволяет описывать траекторию объекта на кривой или поверхности, изменяя значение параметра. Это гибкий подход для изучения и анализа форм и движений объектов.

#математика #mathematics #animation #math #геометрия #geometry #gif

💡 Physics.Math.Code // @physics_lib