This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
👍57❤19🔥18🤯13🙈2
👨🏻💻 Алгоритмическая задачка для наших программистов. Попробуйте самостоятельно написать алгоритм для расчета данного выражения.
💡 Как можно написать алгоритм для общего случая, когда число под самым внутренним корнем равно n ?
✏️ Обсуждаем задачу здесь в комментариях 🔎
#программирование #IT #разработка #computer_science #алгоритмы #задачи #code #разбор_задач #programming #coding
💡 Physics.Math.Code // @physics_lib
✏️ Обсуждаем задачу здесь в комментариях 🔎
#программирование #IT #разработка #computer_science #алгоритмы #задачи #code #разбор_задач #programming #coding
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤14🔥9🤔3🤯2🤗2✍1🌚1
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов
💾 Скачать книги
Для слушателей подготовительных отделений вузов, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
📕 Физика в задачах Экзаменационные задачи с решениями [1985] Меледин Г. В
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Для слушателей подготовительных отделений вузов, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
«Бесконечность и неделимое превосходят наше конечное понимание, первое из-за их величины, последнее из-за их малости; Представьте, что они представляют собой, если их объединить».
— Галилео Галилей.
📕 Физика в задачах Экзаменационные задачи с решениями [1985] Меледин Г. В
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
+79616572047
(СБП) Сбер: +79026552832
(СБП) ЮMoney: 410012169999048
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
❤26👍22🔥6🤩1🤗1
Задачи по физике [4 книги].zip
24.4 MB
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов
Содержит свыше 2000 задач по физике из числа предлагавшихся в физико-математической школе-интернате при Новосибирском государственном университете. Особое внимание уделено тем разделам, которые в школе изучаются недостаточно глубоко, но важны для успешного обучения в вузе. Включено много оригинальных задач, связанных с практикой научно-исследовательской работы. Все они снабжены ответами, наиболее трудные — решениями. В новом издании улучшена структура расположения материала, переработаны формулировки и решения ряда задач.
Для слушателей подготовительных отделений вузов и студентов первых курсов технических направлений, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Содержит свыше 2000 задач по физике из числа предлагавшихся в физико-математической школе-интернате при Новосибирском государственном университете. Особое внимание уделено тем разделам, которые в школе изучаются недостаточно глубоко, но важны для успешного обучения в вузе. Включено много оригинальных задач, связанных с практикой научно-исследовательской работы. Все они снабжены ответами, наиболее трудные — решениями. В новом издании улучшена структура расположения материала, переработаны формулировки и решения ряда задач.
Для слушателей подготовительных отделений вузов и студентов первых курсов технических направлений, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
«Изучение физики — это тоже приключение. Вы найдете это сложным, иногда разочаровывающим, иногда болезненным, а часто и щедро вознаграждающим».
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
👍23❤19🔥8🤗3💯1🆒1
💡 Физика вокруг нас всегда. И от знания законов физики может зависеть ваша жизнь. Наглядно рассмотрим пример, в котором кроется не только простейшая школьная механика, но и сложная теория колебаний, теория устойчивости дифференциальных уравнений.
⚙️ Правильная развесовка прицепа — залог безопасности движения.
Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы
👨🏻💻 Physics.Math.Code // @phjysics_lib
⚙️ Правильная развесовка прицепа — залог безопасности движения.
Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы
👨🏻💻 Physics.Math.Code // @phjysics_lib
👍73❤20🔥9💯4🤝2🤯1
Media is too big
VIEW IN TELEGRAM
💨 Стеклянный паровой двигатель выглядит особенно эстетично. Но безопасно ли?
Чешский стеклодув собрал действующую модель парового двигателя Стефенсона из стекла.
Немного фактов об изобретателе Стефенсоне:
▫️ 1. Построенный в 1825 году паровоз Стефенсона «Локомоушн № 1» уцелел до настоящего времени. Он использовался по назначению до 1857 года, а сейчас экспонируется в Дарлингтонском железнодорожном музее.
▫️ 2. В 1979 году, в честь 150-летия создания паровоза «Ракета», в Англии была построена его действующая копия. Она немного отличается от оригинала укороченной дымовой трубой. Это вызвано тем, что за прошедшие полтора столетия высота насыпи в Рэйнхилле (англ. Rainhill) заметно увеличилась, оставив меньший просвет под мостом.
▫️ 3. Портрет Джорджа Стефенсона был помещён на банкнотах серии Е Государственного банка Великобритании достоинством £5. В обращении эти купюры находились с 7 июня 1990 года по 21 ноября 2003 года.
🔥Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении — игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. #gif #двс #механика #термодинамика #физика #physics #теплота
💡 Physics.Math.Code // @physics_lib
Чешский стеклодув собрал действующую модель парового двигателя Стефенсона из стекла.
Немного фактов об изобретателе Стефенсоне:
▫️ 1. Построенный в 1825 году паровоз Стефенсона «Локомоушн № 1» уцелел до настоящего времени. Он использовался по назначению до 1857 года, а сейчас экспонируется в Дарлингтонском железнодорожном музее.
▫️ 2. В 1979 году, в честь 150-летия создания паровоза «Ракета», в Англии была построена его действующая копия. Она немного отличается от оригинала укороченной дымовой трубой. Это вызвано тем, что за прошедшие полтора столетия высота насыпи в Рэйнхилле (англ. Rainhill) заметно увеличилась, оставив меньший просвет под мостом.
▫️ 3. Портрет Джорджа Стефенсона был помещён на банкнотах серии Е Государственного банка Великобритании достоинством £5. В обращении эти купюры находились с 7 июня 1990 года по 21 ноября 2003 года.
🔥Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.
Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении — игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. #gif #двс #механика #термодинамика #физика #physics #теплота
💡 Physics.Math.Code // @physics_lib
🔥40👍19❤15🤔2👻2❤🔥1🤯1🤩1
Media is too big
VIEW IN TELEGRAM
Внутри центрального процессора (CPU) компьютера находятся несколько компонентов, которые выполняют разные функции. Среди них — ядро, блок управления (CU), арифметико-логическое устройство (ALU) и кэш-память.
▪️Ядро: Базовый элемент CPU, выполняет вычисления, обрабатывает команды и управляет потоками данных. Некоторые функции ядра:
— Обработка команд — ядро считывает и интерпретирует инструкции из оперативной памяти или кэша, преобразуя их в действия.
— Арифметические и логические операции — основа всех вычислений.
— Управление потоками данных — ядро получает данные из оперативной памяти и передаёт результаты обратно.
— Взаимодействие с другими ядрами — в многоядерных процессорах ядра могут обмениваться данными через общую память и координировать выполнение задач.
▪️Блок управления (CU): Управляет работой процессора с помощью электрических сигналов. Некоторые функции CU:
— Декодирует инструкцию — понимает, что должна делать инструкция (например, арифметическая операция, доступ к памяти, операция ввода-вывода).
— Переводит инструкцию в сигналы, которые могут управлять другими частями процессора для выполнения требуемой операции.
▪️Арифметико-логическое устройство (ALU): Выполняет арифметические и логические операции с двоичными числами. Современные процессоры могут содержать несколько ALU, что позволяет выполнять несколько операций одновременно. Некоторые функции ALU:
— Арифметические операции — сложение, вычитание, умножение, деление.
— Логические операции — AND, OR, NOT, XOR (исключающее OR).
▪️Кэш-память: Высокоскоростная память, расположенная в близости к ядрам процессора. Основная задача — хранение данных, к которым процессор обращается наиболее часто или которые могут потребоваться в ближайшее время. Функции кэш-памяти:
— Сокращение времени доступа к данным — процессор может обращаться к кешу, не тратя время на обращение к более медленной оперативной памяти.
— Повышение эффективности многозадачности — наличие кеша позволяет быстрее переключаться между задачами и обрабатывать их параллельно, уменьшая задержки при обращении к данным.
— Оптимизация сложных вычислений — при работе с тяжёлыми вычислительными задачами (например, 3D-рендерингом, обработкой больших данных или машинным обучением) кэш-память помогает сократить время обработки за счёт минимизации обращений к оперативной памяти.
💽 Самые массовые HDD Seagate ST-225
🔬 Практическая задача по электронике для наших подписчиков
📚 3 книги по модернизации и ремонту компьютерного железа
📘 Основы компьютерной электроники [2019] Фомин
#железо #электроника #hdd #hardware #схемотехника #physics #видеоуроки #comuter_science #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
11🔥83❤29👍15🤔3⚡2🤯1💯1🤓1
Попробуйте решить без помощи интернета. Ваш ответ напишите в комментариях к этому посту.
🤔 Задача про последовательности
🪵 Задача по физике про бревно
📜 Математика количества счастливых билетов
#math #математика #задачи #геометрия #разбор_задач #algebra #calculus #математический_анализ
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15✍11❤10❤🔥6🔥3🤯3🤔2
Media is too big
VIEW IN TELEGRAM
Тема видео: выстрел на вращающейся платформе
Сила Кориолиса — одна из сил инерции, введённая для учёта влияния вращательного движения подвижной системы координат на относительное движение материальной точки. Названа по имени французского учёного Гюстава Гаспара Кориолиса, впервые описавшего её в статье, опубликованной в 1835 году.
Сила Кориолиса проявляется при движении в направлении под углом к оси вращения. Например, это сила, которую надо приложить к массивному телу, находящемуся на поверхности вращающегося диска, чтобы оно двигалось от центра диска и находилось на одном радиусе. Сила Кориолиса равна произведению массы материальной точки на её ускорение Кориолиса и направлена противоположно этому ускорению. Важно: сила Кориолиса не связана с реальным взаимодействием тела с другими телами, а её свойства определяются только обстоятельствами кинематического характера, обусловленными выбором конкретной неинерциальной системы отсчёта. В связи с этим о силе Кориолиса говорят, что она не является физической силой, и называют её псевдосилой.
На вращающейся Земле сила Кориолиса вызывает отклонение от вертикали свободно падающего тела к востоку (в первом приближении). Тела, движущиеся вдоль поверхности Земли, под действием силы Кориолиса стремятся изменить направление своего движения: повернуть в Северном полушарии вправо, а в Южном — влево. Эти изменения особенно заметны при высоких скоростях движения (например, при дальних полётах ракет и снарядов) или при продолжительных движениях (вызывают, например, подмывы берегов рек). В технике сила Кориолиса учитывается в теории гироскопов, турбин и т. п.
Сила Кориолиса : Fₖ = - 2 ⋅ [ ω × vᵣ ]
ω — угловая скорость вращения неинерциальной системы отсчёта
vᵣ — скорость движения рассматриваемой материальной точки в этой системе отсчёта
Квадратные скобки [..] — операция векторного произведения
#физика #механика #кинематика #опыты #эксперименты #physics #задачи #physics #mechanics #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤64👍45🔥8🤩2😍2✍1
📚 Подборка по физике для поступающих в ВУЗы
💾 Скачать книги
Систематическое решение задач способствует развитию мышления учащихся, их подготовке к участию в олимпиадах и творческих поисках; воспитывает трудолюбие, настойчивость, волю, целеустремленность и является хорошим средством контроля над знаниями, умениями и навыками. Научить школьника решать физические задачи — одна из сложнейших педагогических проблем.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
#математика #физика #подборка_книг #задачи #physics #maths #math
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Систематическое решение задач способствует развитию мышления учащихся, их подготовке к участию в олимпиадах и творческих поисках; воспитывает трудолюбие, настойчивость, волю, целеустремленность и является хорошим средством контроля над знаниями, умениями и навыками. Научить школьника решать физические задачи — одна из сложнейших педагогических проблем.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
+79616572047
(СБП) ЮMoney: 410012169999048
#математика #физика #подборка_книг #задачи #physics #maths #math
💡 Physics.Math.Code // @physics_lib
❤21👍11🔥6💯1
📚_Подборка_по_физике_для_поступающих_в_ВУЗы.zip
121.6 MB
📚 Подборка по физике для поступающих в ВУЗы
📒 Задачи по физике для поступающих в ВУЗы [1987] Бендриков, Буховцев, Керженцев, Мякишев
📓 Сборник задач по физике. Учебное пособие для поступающих в вузы [1963] Эрастов, Эрастов
📗 Теория и решение задач по физике [1993] Денисов, Ильин, Никитенко, Прунцев.
📘 Сборник задач по физике для поступающих в ВУЗ [2005] Горбунов, Панаиотти
📙 Физика. Задачник-практикум для поступающих в вузы 4-е изд. [2020] Макаров, Чесноков
📓 Методическое пособие по физике для поступающих в вузы [2006] Чешев
📔 Задачник по физике для поступающих в вузы. Электричество, колебания, оптика [1992] Борисов
📕 Конкурсные задачи по математике и физике. Пособие для поступающих в МВТУ им. Баумана [1989] Паршев, Андреев
📘 Физика. Сборник задач для поступающих в вузы [2020] Васюков, Дмитриев, Струков
📗 Справочное руководство по физике для поступающих в вуз и для самообразования [1984] Яворский, Селезнев
📔 Физика для поступающих в вузы [1982] Бутиков, Быков, Кондратьев
и другие книги...
✒️ Способность физики обнаруживать единство в необычном и загадочном мире, окружающем нас, не может нас не вдохновлять. — ©️ Пол Девис.
#математика #физика #подборка_книг #задачи #physics #maths #math
💡 Physics.Math.Code // @physics_lib
📒 Задачи по физике для поступающих в ВУЗы [1987] Бендриков, Буховцев, Керженцев, Мякишев
📓 Сборник задач по физике. Учебное пособие для поступающих в вузы [1963] Эрастов, Эрастов
📗 Теория и решение задач по физике [1993] Денисов, Ильин, Никитенко, Прунцев.
📘 Сборник задач по физике для поступающих в ВУЗ [2005] Горбунов, Панаиотти
📙 Физика. Задачник-практикум для поступающих в вузы 4-е изд. [2020] Макаров, Чесноков
📓 Методическое пособие по физике для поступающих в вузы [2006] Чешев
📔 Задачник по физике для поступающих в вузы. Электричество, колебания, оптика [1992] Борисов
📕 Конкурсные задачи по математике и физике. Пособие для поступающих в МВТУ им. Баумана [1989] Паршев, Андреев
📘 Физика. Сборник задач для поступающих в вузы [2020] Васюков, Дмитриев, Струков
📗 Справочное руководство по физике для поступающих в вуз и для самообразования [1984] Яворский, Селезнев
📔 Физика для поступающих в вузы [1982] Бутиков, Быков, Кондратьев
и другие книги...
✒️ Способность физики обнаруживать единство в необычном и загадочном мире, окружающем нас, не может нас не вдохновлять. — ©️ Пол Девис.
#математика #физика #подборка_книг #задачи #physics #maths #math
💡 Physics.Math.Code // @physics_lib
👍31❤12🔥6❤🔥2🤩2😍2🆒1
Если в стаканы поместить электроды и подать на них высокое напряжение, то деионизированная вода образует стабильный цилиндрический мост между двумя стаканами. Толщина мостика зависит от величины напряжения и, соответственно, проходящего тока.
Когда между двумя стаканами с водой создаётся разность потенциалов около 10 кВ, между стаканами может возникнуть тонкий водяной мостик. Силы поверхностного натяжения удерживают его на весу, а силы электрического давления не дают мостику распасться на отдельные капли. #gif #опыты #видеоуроки #физика #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥22❤18⚡3🤔2
🌀 Математический арт и ряды Фурье
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍66❤20🔥15❤🔥2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?
Как известно, сводчатые потолки более прочные и могут выдерживать даже сильные землетрясения. Эти слова подтверждают сохранившиеся практически в идеальном состоянии памятники архитектуры, которые насчитывают не одну сотню лет. И самое главное, что такого рода конструкции возводились из специального кирпича высококлассными зодчими без единой капли какого-либо раствора. Современные же методы строительства радиусных перекрытий позволяют создавать настоящие шедевры, глядя на которые даже не верится, что такое чудо возможно. Как показывает практика, именно сводчатые или радиусные потолки и перекрытия не только эстетичней выглядят, но и более долговечны, что доказывают старинные храмы, арочные мосты и другие постройки, дожившие до наших дней.
Если в старые времена такого рода конструкции возводились из специального кирпича и без применения связующего раствора, то сейчас благодаря инновационным стройматериалам появилась возможность создавать и вовсе уникальные сооружения. В это сложно поверить, но теперешние каменщики не используют никаких особых приспособлений или арматуры – только кирпич, форма и специальный раствор.
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
Как известно, сводчатые потолки более прочные и могут выдерживать даже сильные землетрясения. Эти слова подтверждают сохранившиеся практически в идеальном состоянии памятники архитектуры, которые насчитывают не одну сотню лет. И самое главное, что такого рода конструкции возводились из специального кирпича высококлассными зодчими без единой капли какого-либо раствора. Современные же методы строительства радиусных перекрытий позволяют создавать настоящие шедевры, глядя на которые даже не верится, что такое чудо возможно. Как показывает практика, именно сводчатые или радиусные потолки и перекрытия не только эстетичней выглядят, но и более долговечны, что доказывают старинные храмы, арочные мосты и другие постройки, дожившие до наших дней.
Если в старые времена такого рода конструкции возводились из специального кирпича и без применения связующего раствора, то сейчас благодаря инновационным стройматериалам появилась возможность создавать и вовсе уникальные сооружения. В это сложно поверить, но теперешние каменщики не используют никаких особых приспособлений или арматуры – только кирпич, форма и специальный раствор.
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
👍59❤28🔥13🤯4⚡1🗿1🆒1