Physics.Math.Code
136K subscribers
5.08K photos
1.73K videos
5.79K files
4.11K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
⚡️ Электромагнитная пушка

Пушка Гаусса (англ. Gauss gun, Coil gun, Gauss cannon) — одна из разновидностей электромагнитного ускорителя масс. Названа по фамилии немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма. Следует иметь в виду, что этот метод ускорения масс используется в основном в любительских установках, так как не является достаточно эффективным для практической реализации. По своему принципу работы (создание бегущего магнитного поля) сходна с устройством, известным как линейный двигатель.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает электромагнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. В любительских схемах иногда в качестве снаряда используют постоянный магнит, так как с возникающей при этом ЭДС индукции легче бороться. Такой же эффект возникает при использовании ферромагнетиков, но выражен он не так ярко благодаря тому, что снаряд легко перемагничивается (коэрцитивная сила).

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы большой ёмкости и с высоким рабочим напряжением.

Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить, что возможны разные алгоритмы работы ускоряющих катушек. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
💨 Кипячение воды с помощью токов Фуко (токи индукции)

В данном эксперименте мы наблюдаем опыт, который очень напоминает принцип работы индукционной плиты, которая у многих есть дома. Такая плита разогревает железосодержащую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем частотой 20-100 кГц. Конструкция плиты состоит из корпуса, платы управления на микроконтроллере, к которой подключён датчик температуры и схема управления силовой частью, силовая часть с мощным выпрямителем и импульсным регулятором (обычно на IGBT-транзисторе).

Для непосредственного нагрева посуда должна быть совместима с индукционным нагревом, поскольку индукционные плиты могут нагревать только находящийся вблизи поверхности черный металл. Такая посуда должна иметь соответствующую отметку на упаковке и должна иметь плоское основание с составляющей из черного металла. Для нагрева неподходящей посуды из цветных металлов или с округлым дном используются переходники: это металлические площадки, которые нагреваются индукцией и нагревают емкость благодаря плотному к ней прилеганию. При их использовании нагрев посуды осуществляется существенно меньше, чем при использовании подходящей посуды с основанием из черных металлов. Для использования имеющих округлое дно воков приходится использовать дорогостоящие переходники, так как магнитное поле быстро падает по мере удаления от поверхности. Если магнит хорошо притягивается к основанию посуды, плита её сможет нагревать. Материал посуды для индукционного нагрева не обязан обладать ферромагнитными свойствами, но желательно обладание высоким удельным сопротивлением и магнитной проницаемостью, на что влияет глубина скин-слоя. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📱 Pushing the Limits of Large Language Model Quantization via the Linearity Theorem

💾 Прочитать о новом методе — ссылка

Ученые из лаборатории исследований ИИ Yandex Research совместно с НИУ ВШЭ, MIT (США), KAUST (Саудовская Аравия) и ISTA (Австрия) представили метод HIGGS. Он позволяет квантовать большие языковые модели без дополнительного обучения и без доступа к исходным данным.

Статья о разработке уже принята на одну из главных конференций по компьютерной лингвистике — NAACL, которая пройдет этой весной в Нью-Мексико (США). Помимо Яндекса и его партнеров по исследованию в ней примут участие Google, Microsoft Research, Гарвардский университет и другие.

Новый способ сжатия даст больше возможностей для использования LLM в различных областях, особенно в тех, где ресурсы ограничены — например, в образовании или социальной сфере. Теперь стартапы и независимые разработчики могут использовать сжатые модели для создания инновационных продуктов и сервисов, не тратя деньги на дорогое оборудование.

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💦 Рабочий насос с гибким рабочим колесом

3d-модель представляет собой нереверсивный шарнирно-лопастной роторный насос. Демонстрируемый насос представляет собой резиновый насос с гибким рабочим колесом. Два совершенно разных насоса.

Насос с откидными лопастями можно использовать только в двух случаях по сравнению с насосом со скользящими лопастями.
▪️ Во-первых, если у вас ограниченные обороты и вам нужно увеличить объем за один оборот.
▪️ Во-вторых, когда перекачиваемая жидкость достаточно вязкая, то само усилие может привести к заклиниванию скользящих лопастей в процессе их перемещения.

#видеоуроки #physics #физика #опыты #механика #техника #гидродинамика #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🧲 Магнитная передача по своей геометрии и функциям напоминает традиционную механическую передачу, в которой вместо зубьев используются магниты. Когда два противоположных магнита приближаются друг к другу, они отталкиваются; если их разместить на двух кольцах, магниты будут действовать как зубья. В отличие от обычной жёсткой контактной обратной связи в цилиндрической передаче, где шестерня может свободно вращаться до тех пор, пока не вступит в контакт со следующей шестернёй, магнитная передача имеет упругую обратную связь. В результате магнитные передачи способны оказывать давление независимо от относительного угла. Несмотря на то, что они обеспечивают такое же передаточное число, как и традиционная зубчатая передача, такие шестерни работают без соприкосновения и не подвержены износу сопрягаемых поверхностей, не шумят и могут проскальзывать без повреждений.

Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу.
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы

💡 Physics.Math.Code // @physics_lib
📚 Курс высшей математики [5 томов] [2010] Смирнов В.И.

Владимир Иванович Смирнов ( 1887 — 1974)
— российский и советский математик, академик АН СССР. Герой Социалистического Труда. Лауреат Сталинской премии второй степени.

💾 Скачать книги

Курс, составленный выдающимся советским математиком Владимиром Смирновым (1887-1974) знакомит читателя с основами высшей математики - аналитической геометрии, дифференциального и интегрального исчисления, высшей алгебры. Книга предназначена, главным образом, для студентов высших технических заведений. Однако, она будет полезной и в качестве пособия и для других вузов, в которых математика не является основным предметом, а также для учительских институтов. #математика #высшая_математика #подборка_книг #math #maths

✏️ Первое условие, которое надлежит выполнять в математике, - это быть точным, второе - быть ясным и, насколько можно, простым.
— Г. Лейбниц

💡 Physics.Math.Code // @physics_lib
📚_Курс_высшей_математики_5_томов_2010_Смирнов_В_И_.zip
101.5 MB
📚 Курс высшей математики [5 томов] [2010] Смирнов В.И.

Фундаментальный учебник по высшей математике, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой простым языком, подробными пояснениями и многочисленными примерами. В первом томе изложены функциональная зависимость и теория пределов, понятие о производной и интеграле, ряды и их приложения к приближенным вычислениям, функции нескольких переменных, комплексные числа, начала высшей алгебры и интегрирование функции.

📗 Курс высшей математики (том I)
📗 Курс высшей математики (том II)
📗 Курс высшей математики (том III, часть I)
📗 Курс высшей математики (том III, часть II)
📗 Курс высшей математики (том IV, часть I)
📗 Курс высшей математики (том IV, часть II)
📗 Смирнов В.И. - Курс высшей математики (том V)

#математика #высшая_математика #подборка_книг #math #maths #матан #calculus #математический_анализ

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🔥 Тепловой взрыв при изохорическом нагревании газа 💨 [НИЯУ МИФИ] Опыт от Гервидса Валериана Ивановича

Паровой взрыв (англ. Vapor Explosion) — резкое (быстрое) за время 1 мс образование большого количества пара, сопровождающееся местным повышением давления, вследствие перехода тепловой энергии (затрачиваемой на испарение жидкости и расширение пара) в механическую.

Жидкости высокой степени чистоты легко входят в перегретое состояние. Связано это с тем, что в таких средах присутствует весьма малое количество зародышей паровых пузырей. Однако если перегретая чистая жидкость контактирует с ячеистой структурой или внутри неё возникают турбулентные течения, то в течение сравнительно малого промежутка времени количество зародышей многократно увеличивается и в них начинается процесс парообразования. Возникающие при этом локальные течения ещё больше турбулизируют жидкость, что приводит к росту интенсивности парообразования и процесс ускоряется лавинообразно до тех пор, пока вся жидкость не превратится в пар.

По этой причине нагрев чистых жидкостей до температуры кипения чрезвычайно опасен. На большинстве бытовых водонагревательных приборов есть соответствующие предупреждения о недопустимости использования дистиллированной воды.

☢️ условиях тяжелой аварии на АЭС паровой взрыв может происходить при контакте расплавленных материалов активной зоны — кориума — с теплоносителем. Механизмы фрагментации расплава связаны с локальными тепловыми и гидродинамическими явлениями на границе расплава и теплоносителя. Периодический рост и схлопывание паровых пузырей, разница в скоростях капли и расплава приводят к силам, вызывающим дробление капель. Образующиеся ударные волны при взаимодействии с каплями расплава также приводят к дроблению капель.

Силовые элементы главного циркуляционного контура АЭС работают в тяжелых условиях: высокий уровень температур и давлений; значительные термические напряжения, обусловленные большими тепловыми нагрузками и градиентами температуры; высокие скорости теплоносителя, способствующие появлению вибраций; ионизирующее излучение. Поэтому во время эксплуатации серьёзное внимание обращается на поддержание заданного безопасного теплогидравлического режима. На АЭС имеются надежные системы контроля всех основных режимных параметров и состояния оборудования. Тем не менее, даже маловероятные отказы отдельных элементов оборудования или отказы в системах контроля и регулирования, или просто случайное сочетание неблагоприятных отклонений режимных параметров от нормальных условий эксплуатации могут привести к аварийным ситуациям. Безопасность АЭС базируется на комплексе мероприятий, направленных на профилактику причин аварийных ситуаций и совершенствования средств защиты. Один из главных вопросов оценки парового взрыва — знание того, как быстро отводится тепло от расплавленной частицы. Исследованию этого вопроса посвящён комплекс научных исследований, в частности механизмам фрагментации теплоносителя. #опыты #эксперименты #физика #термодинамика #physics #science #наука #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🚜 Модель трактора с действующим паровым двигателем 🔥💨

Паровой трактор — трактор или тягач, использующий в качестве силовой установки паровой двигатель (тепловой двигатель внешнего сгорания). Подобные трактора активно производились с конца 19 века и до окончания Второй мировой войны, паровые тракторы используют до сих пор энтузиасты и коллекционеры в США и других странах, часть из них хранится в музеях. Внешне они похожи на паровозы на колёсах или гусеницах.

Тракторы создавались во многих странах Европы и в США, и производились множества конструкций и компоновок. Условно все конструкции можно разделить на 2-а типа:
▪️ Паровой трактор «overtype» — «высокий тип», это если двигатель расположен непосредственно сверху на котле. Такой котел имеет конструкцию паровозного (локомобильного) типа, то есть жаротрубно — дымогарный. Компоновка «overtype» использовалась исключительно в массивных тракторах — тягачах, которые были очень тяжелыми и громоздкими, что определялась конструкцией их котла паровозного типа, а также низкими параметрами пара, которые такие котлы могли развивать. Стоит указать, что котлы паровозного типа работали на давлении пара не более 12-14 атм. и действовали исключительно на выброс «мятого» пара в атмосферу. Таким образом, они функционировали без применения конденсаторов.

▪️ Паровой трактор «undertype» 1874 год. — «низкий тип», двигатель расположен где-то на раме трактора или автомобиля, то есть паровой мотор стоит отдельно от котла. Компоновка «undertype», применялась когда паровой двигатель расположен на раме шасси, то есть установлен отдельно от котла, и использовалась в большом разнообразии компоновок. Эта конструкция применялась как для различных тракторов- тягачей, так и для различных автомобилей. В этом случае использовались котлы самой различной компоновки, в том числе и на жидком топливе — от керосина, до мазута. Наиболее технически совершенные модели котлов в таких автомобилях и тракторах создавали давление пара в 100 атм, что обеспечивало достаточно высокую экономичность и значительную мощность подобных паросиловых установок. Например, на давлении в 100 атм. работал мотор немецкого парового грузовика фирмы «Henschel», при температуре перегретого пара в 450 0С. #опыты #эксперименты #физика #термодинамика #physics #science #наука #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой

Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?

Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
😵‍💫 Вязкость газов (опыт с дисками): модель гидродинамической коробки передач

Вязкость газов — это свойство, благодаря которому выравниваются скорости движения различных слоёв газа. Механизм возникновения вязкости заключается в том, что из слоя газа с большой скоростью движения переносится импульс к слою, движущемуся с меньшей скоростью. В результате возникает внутреннее трение газовых слоёв: быстрый слой тормозится, а медленный — ускоряется.

Некоторые свойства вязкости газов:
▪️ Зависимость от температуры: вязкость газов увеличивается при нагревании. Это связано с тем, что средняя скорость молекул возрастает с повышением температуры.
▪️ Независимость от давления: вязкость не очень разреженных газов практически не зависит от давления.
▪️ Измерение: вязкость газов характеризуют динамическим коэффициентом вязкости (единица измерения в СИ — паскаль-секунда, Па·с) или кинематическим коэффициентом вязкости (единица измерения в СИ — м²/c).
▪️ Измерение вязкости: для измерения используют вискозиметры, например, измеряют время вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук.
#physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки #газодинамика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM