Physics.Math.Code
137K subscribers
5.11K photos
1.79K videos
5.78K files
4.18K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
Media is too big
VIEW IN TELEGRAM
👩‍💻 Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, математическое описание которого опубликовал польский математик Вацлав Серпинский в 1915 году. Также известен как «салфетка» Серпинского. На основе треугольника Серпинского могут быть изготовлены многодиапазонные фрактальные антенны. Образования, похожие на треугольник Серпинского, возникают при эволюции многих конечных автоматов, подобных игре Жизнь.

В 2024 году Международная команда исследователей сообщила об открытии белка цитратсинтазы в цианобактерии Synechococcus elongatus, который самоорганизуется в треугольник Серпинского, это первый известный молекулярный фрактал.

Середины сторон равностороннего треугольника T₀ соединяются отрезками. Получаются 4 новых треугольника. Из исходного треугольника удаляется внутренность срединного треугольника. Получается множество T₁ , состоящее из 3 оставшихся треугольников «первого ранга». Поступая точно так же с каждым из треугольников первого ранга, получим множество T₂, состоящее из 9 равносторонних треугольников второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность T₀ ⊃ T₁ ⊃ T₂ ⊃... ⊃Tₙ .

Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные — в белый, то образуется треугольник Серпинского. #gif #геометрия #математика #симметрия #geometry #maths #фракталы

Пытались ли вы запрограммировать отрисовку какого-нибудь фрактала? Напишите в комментариях, а лучше покажите что у вас получилось.

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Задачка по электронике для наших подписчиков

▪️ Схема какого электронного элемента (полупроводникового устройства) показана на рисунке?
▪️ В чем основные преимущества и недостатки?
▪️ В чем был смысл усложнять более простую версию такого же радиоэлемента?

#задачи #электроника #схемотехника #физика #physisc #electronics #science

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Фрактальная_геометрия_природы_2002_RU+EN.zip
50.1 MB
📕 Фрактальная геометрия природы [2002] Бенуа Мандельброта

Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Москва: Институт компьютерных исследований, 2002, 656 стр.


«Почему геометрию часто называют холодной и сухой? Одна из причин в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, берега - не окружности и кора дерева не является гладкой, и молния не движется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности!»

«Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.»

📘 The fractal geometry of nature [1982] Benoit B. Mandelbrot

Clouds are not spheres, mountains are not cones, and lightening does not travel in a straight line. The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes. Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

💡 Physics.Math.Code
// @physics_lib
💥 Лазерная резка — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Для лазерной резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO2-лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Промышленное применение газо-лазерной резки с каждым годом увеличивается, но этот процесс не может полностью заменить традиционные способы разделения металлов. В сопоставлении со многими из применяемых на производстве установок стоимость лазерного оборудования для резки ещё достаточно высока, хотя в последнее время наметилась тенденция к её снижению. В связи с этим процесс лазерной резки становится эффективным только при условии обоснованного и разумного выбора области применения, когда использование традиционных способов трудоемко или вообще невозможно.

Лучше всего обрабатываются металлы с низкой теплопроводностью, так как в них энергия лазера концентрируется в меньшем объеме металла, и наоборот, при лазерной резке металлов с высокой теплопроводностью может образоваться грат. #лазер #техника #science #физика #physics #производство

💡 Physics.Math.Code
// @physics_lib
👩🏻💻А вы знали, что участвовать во Всероссийской олимпиады школьников «13-й элемент. Alхимия будущего» для учеников 8–11 классов можно не только онлайн?

Да-да! В течение всего января на площадках партнеров будут проходить очные этапы олимпиады.

Каждый участник выбирает подходящий ему формат: пройти комплексный тест онлайн или среди других юных ученых🧑🏻🔬

Узнать расписание и локацию площадок можно в официальной группе: https://vk.com/13element_al

Регистрация на олимпиаду уже идет по ссылке: clck.ru/3EiNbX
Отборочный этап продлится до 31 января 2025 года. Его результаты объявят до 17 февраля.

Финальные испытания пройдут 13 марта, а торжественное подведение итогов – 4 апреля.

Лауреаты и финалисты олимпиады получат призы от РУСАЛ и дополнительные баллы при поступлении от ведущих вузов и техникумов страны🎁

Официальный сайт проекта: clck.ru/3EiNbX
Контактные номера: 8(913)569-68-48, 8(929)333-07-22
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Самое высокое передаточное число: последнюю шестерню можно прибить к стене

Передаточное число — один из параметров пары зацепления из двух зубчатых колёс, определяемый как соотношение числа зубьев большего зубчатого колеса к меньшему.
u = Zб/Zм где
Zб — число зубьев колеса (большого);
Zм — число зубьев шестерни (малой).


Определение передаточного числа одинаково применимо к любым механическим зубчатым передачам в виде пары зацепления из двух зубчатых колёс, независимо от типа: цилиндрическим, коническим, гипоидным, червячным. Передаточное число всегда есть рациональное число. Для определения передаточного числа не имеет значения, какое зубчатое колесо является ведущим, а какое ведомым. Передаточное число показывает:
▪️ Насколько данная пара зацепления в принципе может изменить крутящий момент в ту или иную сторону.
▪️ Линейное соотношение диаметров зубчатых колёс.

Передаточное отношение — отношение между угловыми скоростями, либо крутящими моментами валов (в передачах), либо перемещениями (линейным или угловым). Понятие применяется в машиностроении (передачи), теории механизмов и машин, метрологии.

Передаточное отношение любых зубчатых и цепных передач можно определить без замеров угловых скоростей в движении, зная лишь числа зубьев всех зубчатых колёс, составляющих передачу. В общем случае для передачи из двух зубчатых колёс справедлива формула:

I₁₂ = ω₁/ω₂ = z₂/z₁ — то есть, число зубьев ведомого зубчатого колеса делится на число зубьев ведущего зубчатого колеса (не наоборот).

Передаточное число в отличие от передаточного отношения всегда положительное и больше или равно единице. Передаточное число характеризует передачу только количественно. Передаточное число и передаточное отношение могут совпадать только у передачи внутреннего зацепления. У передач внешнего зацепления они не совпадают, так как в любом случае имеют разные знаки: передаточное отношение – отрицательное, а передаточное число – положительное. Наиболее распространены понижающие передачи, так как частота вращения исполнительного механизма в большинстве случаев меньше частоты вращения вала двигателя. #механика #физика #опыты #эксперименты #динамика #кинематика #physics

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐

Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif

💡 Physics.Math.Code
// @physics_lib
Media is too big
VIEW IN TELEGRAM
🚀 Что будет, если добавить жидкий газ в бутылку с водой

Если добавить жидкий газ в бутылку с водой и перевернуть её, она взлетит. Можно взять любую теплую жидкость: вода, кола, спрайт. Самое важное — температура жидкости. Понадобится пластиковая бутылка и перчатки, чтобы не заморозить руки. И самые важный ингредиент — жидкий газ бутан (C₄H₁₀). Температура кипения бутана -0.5 °С. Это означает, что в жидком состоянии он находится при температуре t < -0.5 °С. Достаточно будет наполнить 2/3 бутылки водой, а 1/3 наполнить жидким газом. Через несколько секунд можно будет увидеть, как на поверхности воды плавает жидкость бутанового раствора. Между ними находится газообразная прослойка. Это тот самый эффект Лейденфроста, о котором уже был пост в нашем канале.

Эффект Лейденфроста — это физическое явление, при котором жидкость при непосредственном контакте с массой, температура которой значительно выше температуры кипения жидкости, образует изолирующий слой пара, препятствующий быстрому кипению этой жидкости. Благодаря этому капля парит над поверхностью, а не вступает с ней в физический контакт. Чаще всего это наблюдается при приготовлении пищи; капельки воды капают в кастрюлю, чтобы измерить ее температуру: если температура в кастрюле равна или выше температуры точки Лейденфроста, то вода растекается по сковороде и испаряется дольше, чем в кастрюле с температурой ниже точки Лейденфроста (но все равно выше температуры кипения). Этот эффект также обусловливает способность жидкого азота распространяться по полу.

Итак, холодный бутан плавает на поверхности теплой воды на паровой прослойке. Как только мы переворачиваем бутылку, скорость реакции испарения мгновенно возрастает. Во время переворачивания бутылки теплая вода смешивается с бутаном, и бутан немедленно превращается в газ, который увеличивается в объем более чем в 10 раз. В результате он стремительно пытается выйти из бутылки, поэтом образуется реактивная тяга через узкое горлышко — наша ракета взлетает.
#механика #физика #опыты #эксперименты #динамика #кинематика #physics #лекции #science #наука

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Задача для наших подписчиков

🧲 При вращении магнита на отвертке, магнит постоянно поднимается вверх. Объясните с точки зрения физики почему так происходит?

How Do Magnets Climb This Screwdriver?

#механика #физика #опыты #эксперименты #задачи #physics #science #наука #магнетизм

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Как провести новогодние каникулы с пользой? Проверить свои знания и выиграть крутые призы!🥳
Всероссийская олимпиада школьников «13-й элемент. Alхимия будущего» для учеников 8–11 классов проводит масштабный розыгрыш🎁

Среди призов:
1 игровая консоль Xbox
3 смарт-часов Xiaomi Redmi Watch 3 Active
5 наушников TWS Xiaomi Redmi
7 толстовок
10 рюкзаков
15 футболок

Розыгрыш проходит в группе олимпиады во «Вконтакте»: https://vk.com/13element_al

Для участия нужно лишь зарегистрироваться на олимпиаду по ссылке: clck.ru/3EiNbX

Победителей определит программа рандомус, их имена станут известны 13 февраля

Победители, призеры и финалисты олимпиады также получат ценные подарки и призы от РУСАЛ и дополнительные баллы при поступлении от ведущих вузов страны. Отборочный этап олимпиады продлится до 31 января 2025 года.
This media is not supported in your browser
VIEW IN TELEGRAM
🟡 Демонстрация того, как кривые на первый взгляд фигуры оказываются построены исключительно из прямых линий. Здесь речь идет о гиперболоиде вращения. В геометрии гиперболоид вращения, иногда называемый круговым гиперболоидом, представляет собой поверхность, образованную вращением гиперболы вокруг одной из ее главных осей. Гиперболоидные конструкции — сооружения в форме однополостного гиперболоида или гиперболического параболоида. Такие конструкции, несмотря на свою кривизну, строятся из прямых балок. Однополостный гиперболоид и гиперболический параболоид — дважды линейчатые поверхности, то есть через любую точку такой поверхности можно провести две пересекающиеся прямые, которые будут целиком принадлежать поверхности. Вдоль этих прямых и устанавливаются балки, образующие характерную решётку. Такая конструкция является жёсткой: если балки соединить шарнирно, гиперболоидная конструкция всё равно будет сохранять свою форму под действием внешних сил. Для высоких сооружений основную опасность несёт ветровая нагрузка, а у решётчатой конструкции она невелика. Эти особенности делают гиперболоидные конструкции прочными, несмотря на невысокую материалоёмкость. #gif #геометрия #физика #математика #math #geometry #алгебра #maths

💡 Physics.Math.Code
// @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Сборка мусора (англ. garbage collection) в программировании — одна из форм автоматического управления памятью. Специальный процесс, называемый сборщиком мусора (англ. garbage collector - GC), периодически освобождает память, удаляя из неё ставшие ненужными объекты. Автоматическая сборка мусора позволяет повысить безопасность доступа к памяти. Сборка мусора была впервые применена Джоном Маккарти в 1959 году в среде программирования на разработанном им функциональном языке программирования Лисп. Впоследствии она применялась в других системах программирования и языках, преимущественно — в функциональных и логических. Необходимость сборки мусора в языках этих типов обусловлена тем, что структура таких языков делает крайне неудобным отслеживание времени жизни объектов в памяти и ручное управление ею. Широко используемые в этих языках списки и основанные на них сложные структуры данных во время работы программ постоянно создаются, надстраиваются, расширяются, копируются, и правильно определить момент удаления того или иного объекта затруднительно.

В промышленных процедурных и объектных языках сборка мусора долго не использовалась. Предпочтение отдавалось ручному управлению памятью, как более эффективному и предсказуемому. Но со второй половины 1980-х годов технология сборки мусора стала использоваться и в директивных (императивных), и в объектных языках программирования, а со второй половины 1990-х годов всё большее число создаваемых языков и сред, ориентированных на прикладное программирование, включают механизм сборки мусора либо как единственный, либо как один из доступных механизмов управления динамической памятью. В настоящее время она используется в Оберон, Java, Python, Ruby, C#, D, F#, Go и других языках.

▪️Висячая ссылка (англ. dangling pointer) — это ссылка на объект, который уже удалён из памяти. После удаления объекта все сохранившиеся в программе ссылки на него становятся «висячими». Память, занимаемая ранее объектом, может быть передана операционной системе и стать недоступной, или быть использована для размещения нового объекта в той же программе. В первом случае попытка обратиться по «повисшей» ссылке приведёт к срабатыванию механизма защиты памяти и аварийной остановке программы, а во втором — к непредсказуемым последствиям. Появление висячих ссылок обычно становится следствием неправильной оценки времени жизни объекта: программист вызывает команду удаления объекта до того, как его использование прекратится.

▪️Утечки памяти — Создав объект в динамической памяти, программист может не удалить его после завершения использования. Если ссылающейся на объект переменной будет присвоено новое значение и на объект нет других ссылок, он становится программно недоступным, но продолжает занимать память, поскольку команда его удаления не вызывалась. Такая ситуация и называется утечкой памяти (англ. memory leak). Если объекты, ссылки на которые теряются, создаются в программе постоянно, то утечка памяти проявляется в постепенном увеличении объёма используемой памяти; если программа работает долго, объём используемой ею памяти постоянно растёт, и через какое-то время ощутимо замедляется работа системы (из-за необходимости при любом выделении памяти использовать свопинг), либо программа исчерпывает доступный объём адресного пространства и завершается с ошибкой. 📱 Подробности

📱 Автор видео: Владимир Балун

#программирование #архитектура #многопоточность #сборщикмусора #cpp #java #coding #programming

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Авиационный гироскоп

✈️ Гироскопы в авиации позволяют стабилизировать полёт и контролировать положение самолёта относительно горизонта.
Гирокомпасы (роторные гироскопы) используются для определения координат самолёта в пространстве при отсутствии ориентиров (например, в условиях высокой облачности). Без гирокомпасов невозможна работа систем автоматического пилотирования. Отдельно установленные гироскопы применяют для определения отклонений курса, крена и тангажа: если воздушное судно начнёт отклоняться от курса, а также крениться в продольной или поперечной плоскости, датчик это зафиксирует. Также в авиации используются лазерные гироскопы в составе инерциальных навигационных систем, позволяющих определять местоположение самолёта без опоры на внешние источники информации.

История гироскопа берет свое начало в первой половине XIX века, когда физики и инженеры стали пытаться понять и контролировать движение объектов. Однако основоположником современного гироскопа по праву можно считать Жана Бернара Леона Фуко — французского физика и изобретателя, который в 1852 году поставил эксперимент, доказывающий вращение Земли вокруг своей оси. Фуко показал, что объект, свободно подвешенный и способный вращаться, будет сохранять свою ориентацию в пространстве, даже если окружающая среда движется.

Принцип работы гироскопа основан на законе сохранения углового момента: если вращающийся объект не испытывает внешних воздействий, его ориентация будет оставаться постоянной. При включении ротор начинает вращаться, создавая эффект гироскопической устойчивости. Этот эффект означает, что гироскоп, начав вращаться, будет сопротивляться изменениям угловой ориентации. Это свойство позволяет гироскопу оставаться стабильным, и даже при изменении положения основы, его ось будет сохранять своё направление в пространстве.

Главный принцип, лежащий в основе работы гироскопа, заключается в явлении, которое называется угловым моментом. Когда ротор начинает вращаться с высокой скоростью, он накапливает значительный угловой момент, и эта величина становится устойчивой. Если на гироскоп не воздействуют внешние силы, то он будет сохранять своё направление, независимо от движения окружающей его платформы. Другой важный эффект, связанный с гироскопами, — это прецессия. Она проявляется, когда на ротор гироскопа оказывается внешняя сила, что вызывает движение его оси вращения в перпендикулярной плоскости. Это свойство нашло применение в инерциальных системах навигации, где гироскопы помогают определить изменение ориентации и положения транспортного средства.

В начале XX века гироскоп получил широкое применение в морской навигации благодаря немецкому инженеру Герману Аншютцу-Кемпе. В 1908 году он разработал первый рабочий гирокомпас, который использовал гироскоп для определения направления. Этот компас оказался особенно полезным в условиях, где традиционные магнитные компасы были подвержены ошибкам, например, вблизи крупных металлических объектов или полюсов Земли. Благодаря гирокомпасу корабли могли двигаться с точной ориентацией, независимо от магнитных аномалий. С этого момента началась настоящая эра применения гироскопов в навигации. #физика #physics #авиация #факты #опыты #эксперименты #механика #кинематика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✏️ «Не существует неталантливого и ленивого ребёнка, существует только ограниченная педагогика». ©️ Шалва Амонашвили

#математика #наука #math #лекции #видеоуроки #эксперименты #maths #science

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🗜Британский изобретатель Джозеф Брама в конце XVIII века изобрёл винтовой водопроводный кран (вентиль). В 1778 году он получил патент на ватерклозет с поплавковым клапаном, а спустя пять лет запустил производство вентиля, который с небольшими изменениями дошёл до нашего времени.

Также односторонний водяной клапан без движущихся частей в 1920 году запатентовал Никола Тесла. Благодаря сложной внутренней геометрии трубы, жидкость течёт по ней свободно в одном направлении и гораздо медленнее — в обратном.

Ещё одним изобретателем вентилей считается Нахум Вентиль, который в середине XIX века запатентовал вентиль-клапан в трубопроводах и аппаратах для запора потока жидкости, пара, газа.

#техника #наука #физика #изобретения #gif #эксперименты #maths #science

💡 Physics.Math.Code // @physics_lib