📙 Минимальные поверхности и функции ограниченной вариации [1989] Джусти Э.
💾 Скачать книгу
Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной. Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
Первые исследования минимальных поверхностей восходят к Лагранжу (1768), который рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный контур. Предполагая искомую поверхность, задаваемую в виде z = f(x, y) , Лагранж определил, что эта функция должна удовлетворять уравнению Эйлера — Лагранжа. Позже Монж (1776) обнаружил, что условие минимальности площади поверхности влечёт, что её средняя кривизна равна нулю. Поэтому за поверхностями с H = 0 закрепилось название «минимальные». В действительности, однако, нужно различать понятия минимальной поверхности и поверхности наименьшей площади, так как условие H = 0 представляет собой лишь необходимое условие минимальности площади, вытекающее из равенства нулю 1-й вариации площади поверхности среди всех поверхностей с заданной границей.
#топология #геометрия #математика #функциональный_анализ #geometry #math #maths #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной. Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
Первые исследования минимальных поверхностей восходят к Лагранжу (1768), который рассмотрел следующую вариационную задачу: найти поверхность наименьшей площади, натянутую на данный контур. Предполагая искомую поверхность, задаваемую в виде z = f(x, y) , Лагранж определил, что эта функция должна удовлетворять уравнению Эйлера — Лагранжа. Позже Монж (1776) обнаружил, что условие минимальности площади поверхности влечёт, что её средняя кривизна равна нулю. Поэтому за поверхностями с H = 0 закрепилось название «минимальные». В действительности, однако, нужно различать понятия минимальной поверхности и поверхности наименьшей площади, так как условие H = 0 представляет собой лишь необходимое условие минимальности площади, вытекающее из равенства нулю 1-й вариации площади поверхности среди всех поверхностей с заданной границей.
#топология #геометрия #математика #функциональный_анализ #geometry #math #maths #science
💡 Physics.Math.Code // @physics_lib
Минимальные_поверхности_и_функции_ограниченной_вариации_1989_Джусти.djvu
2 MB
📙 Минимальные поверхности и функции ограниченной вариации [1989] Джусти Э.
Книга итальянского математика, одного из наиболее известных специалистов по теории минимальных поверхностей, посвященная современной теории минимальных поверхностей в эвклидовом пространстве произвольной размерности. В ней систематически излагаются методы и главные результаты этой теории, полученные автором и такими математиками, как Бернштейн, Де Джорджи, Саймонз, Альмгрен. Представлена теория функционала Дирихле, и дан краткий обзор основополагающих идей Флеминга о связи между минимальными конусами и особыми точками абсолютно минимальных поверхностей.
Для специалистов по теории минимальных поверхностей и смежным дисциплинам, аспирантов и студентов старших курсов, специализирующихся по теории функций и функциональному анализу.
Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной. Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
#топология #геометрия #математика #функциональный_анализ #geometry #math #maths #science
💡 Physics.Math.Code // @physics_lib
Книга итальянского математика, одного из наиболее известных специалистов по теории минимальных поверхностей, посвященная современной теории минимальных поверхностей в эвклидовом пространстве произвольной размерности. В ней систематически излагаются методы и главные результаты этой теории, полученные автором и такими математиками, как Бернштейн, Де Джорджи, Саймонз, Альмгрен. Представлена теория функционала Дирихле, и дан краткий обзор основополагающих идей Флеминга о связи между минимальными конусами и особыми точками абсолютно минимальных поверхностей.
Для специалистов по теории минимальных поверхностей и смежным дисциплинам, аспирантов и студентов старших курсов, специализирующихся по теории функций и функциональному анализу.
Минимальная поверхность — гладкая поверхность с нулевой средней кривизной. Название объясняется тем, что гладкая поверхность с заданным контуром, минимизирующая площадь, является минимальной. Однако не всякая минимальная поверхность минимизирует площадь среди поверхностей с заданным контуром.
#топология #геометрия #математика #функциональный_анализ #geometry #math #maths #science
💡 Physics.Math.Code // @physics_lib
📗 Вероятность [1969] Мостеллер Фредерик, Рурке Роберт, Томас Джордж
💾 Скачать книгу
Переиздание книги и известных американских математиков и педагогов Ф. Мостеллера, Р. Рурке и Дж. Томаса «Вероятность» представляет особый интерес для широкого круга читателей, несмотря на то что оригинал этой книги появился более 50 лет назад в 1961 г. Дело в том, что эта книга явилась одним из первых элементарных учебников по теории вероятностей и статистики для школьников. Книга будет полезна школьным учителям математики, учащимся старших классов, студентам нематематических специальностей и всем, кто интересуется приложениями теории вероятностей и статистики в жизни.
#алгебра #теория_вероятностей #задачи #математика #анализ #math #mathematics #статистика
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Переиздание книги и известных американских математиков и педагогов Ф. Мостеллера, Р. Рурке и Дж. Томаса «Вероятность» представляет особый интерес для широкого круга читателей, несмотря на то что оригинал этой книги появился более 50 лет назад в 1961 г. Дело в том, что эта книга явилась одним из первых элементарных учебников по теории вероятностей и статистики для школьников. Книга будет полезна школьным учителям математики, учащимся старших классов, студентам нематематических специальностей и всем, кто интересуется приложениями теории вероятностей и статистики в жизни.
#алгебра #теория_вероятностей #задачи #математика #анализ #math #mathematics #статистика
💡 Physics.Math.Code // @physics_lib
Вероятность_1969_Мостеллер_Фредерик,_Рурке_Роберт,_Томас_Джордж.zip
12.2 MB
📗 Вероятность [1969] Мостеллер Фредерик, Рурке Роберт, Томас Джордж
Эта книга, написанная группой известных американских математиков и педагогов, представляет собой элементарное введение в теорию вероятностей и статистику - разделы математики, которые находят сейчас все большее и большее применение в науке и в практической деятельности. Написанная живым и ярким языком, она содержит множество увлекательных примеров, взятых большей частью из сферы повседневной жизни. Несмотря на то, что для чтения книги достаточно владеть математикой в объеме восьмилетней школы, она является вполне корректным введением в теорию вероятностей.
Книга будет полезна всем интересующимся теорией вероятностей, студентам технических и естественно-научных вузов, техникумов, учителям средних школ и учащимся старших классов, а также всем любителям математики.
В предисловии к первому русскому изданию этой книги в 1969 г. И. М. Яглом пишет: «... в наше время основы теории вероятностей должны входить в научный багаж каждого образованного человека».
По прошествии почти 50 лет актуальность этого замечания возросла многократно. Теория вероятностей и статистика стали не только прочной базой для большинства естественнонаучных и технических дисциплин, без них не обходится и большинство социальноэкономических наук. Вероятностью и статистикой должны хорошо владеть психологи и лингвисты, социологи и экономисты, менеджеры и специалисты по рекламе и т. п. А базовые понятия этих дисциплин должен знать буквально каждый, ибо без этого стало трудно ориентироваться в резко возросшем потоке информации, оценивать риски собственных решений.
В качестве особого достоинства предлагаемой книги мне бы хотелось выделить ее неспешный и обстоятельный характер, когда каждое новое понятие детально поясняется и обсуждается на многочисленных примерах. Увы, такой жанр не удается воспроизвести в современных российских школьных математических учебниках, привязанных к урокам и часам. Для многих понятий теории вероятностей и статистики такой подробный разговор весьма важен, ибо они не сразу укладываются в голове читателя.
Особо стоит остановиться на подборе задач в этой книге: авторы не ограничиваются известными историческими задачами из азартных игр, подобранные в книге задачи показывают самые разные области приложений. #алгебра #теория_вероятностей #задачи #математика #анализ #math #mathematics #статистика
💡 Physics.Math.Code // @physics_lib
Эта книга, написанная группой известных американских математиков и педагогов, представляет собой элементарное введение в теорию вероятностей и статистику - разделы математики, которые находят сейчас все большее и большее применение в науке и в практической деятельности. Написанная живым и ярким языком, она содержит множество увлекательных примеров, взятых большей частью из сферы повседневной жизни. Несмотря на то, что для чтения книги достаточно владеть математикой в объеме восьмилетней школы, она является вполне корректным введением в теорию вероятностей.
Книга будет полезна всем интересующимся теорией вероятностей, студентам технических и естественно-научных вузов, техникумов, учителям средних школ и учащимся старших классов, а также всем любителям математики.
В предисловии к первому русскому изданию этой книги в 1969 г. И. М. Яглом пишет: «... в наше время основы теории вероятностей должны входить в научный багаж каждого образованного человека».
По прошествии почти 50 лет актуальность этого замечания возросла многократно. Теория вероятностей и статистика стали не только прочной базой для большинства естественнонаучных и технических дисциплин, без них не обходится и большинство социальноэкономических наук. Вероятностью и статистикой должны хорошо владеть психологи и лингвисты, социологи и экономисты, менеджеры и специалисты по рекламе и т. п. А базовые понятия этих дисциплин должен знать буквально каждый, ибо без этого стало трудно ориентироваться в резко возросшем потоке информации, оценивать риски собственных решений.
В качестве особого достоинства предлагаемой книги мне бы хотелось выделить ее неспешный и обстоятельный характер, когда каждое новое понятие детально поясняется и обсуждается на многочисленных примерах. Увы, такой жанр не удается воспроизвести в современных российских школьных математических учебниках, привязанных к урокам и часам. Для многих понятий теории вероятностей и статистики такой подробный разговор весьма важен, ибо они не сразу укладываются в голове читателя.
Особо стоит остановиться на подборе задач в этой книге: авторы не ограничиваются известными историческими задачами из азартных игр, подобранные в книге задачи показывают самые разные области приложений. #алгебра #теория_вероятностей #задачи #математика #анализ #math #mathematics #статистика
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.
Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.
💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
💾 Скачать книги
Александр Соломонович Компанеец (1914 — 1974) — советский физик-теоретик, доктор физико-математических наук, ученик Л. Д. Ландау (первым сдал ему знаменитый теорминимум). Внёс фундаментальный вклад в решение таких задач, как установление равновесия между веществом и излучением, нелинейная автомодельная тепловая волна от мгновенного точечного источника, лучистый перенос энергии, радиоизлучение сильного взрыва, сильный взрыв в неоднородной атмосфере с её прорывом, ударные волны в пластичных средах и другие проблемы сильного взрыва, теория ускорителей (сильноточные ускорители, теории группирователя, теория резонаторов). Вывел уравнение, описывающее спектры излучения, взаимодействующего с разреженным электронным газом (уравнение Компанейца).
#physics #физика #подборка_книг #наука #лекции #science #курс_физики
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Александр Соломонович Компанеец (1914 — 1974) — советский физик-теоретик, доктор физико-математических наук, ученик Л. Д. Ландау (первым сдал ему знаменитый теорминимум). Внёс фундаментальный вклад в решение таких задач, как установление равновесия между веществом и излучением, нелинейная автомодельная тепловая волна от мгновенного точечного источника, лучистый перенос энергии, радиоизлучение сильного взрыва, сильный взрыв в неоднородной атмосфере с её прорывом, ударные волны в пластичных средах и другие проблемы сильного взрыва, теория ускорителей (сильноточные ускорители, теории группирователя, теория резонаторов). Вывел уравнение, описывающее спектры излучения, взаимодействующего с разреженным электронным газом (уравнение Компанейца).
#physics #физика #подборка_книг #наука #лекции #science #курс_физики
💡 Physics.Math.Code // @physics_lib
Курс_теоретической_физики_2_тома_1972_А_С_Компанеец.zip
19 MB
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
📕 Из описания к тому I:
В книге изложены три раздела теоретической физики: «Механика», «Электродинамика» и «Квантовая механика». В каждом из этих разделов автор формулирует наиболее общие принципы и законы, из которых как следствия получаются частные законы и уравнения.
📕 Из описания к тому II:
В книге изложены четыре раздела теоретической физики: «Статистическая физика», «Гидродинамика и газовая динамика», «Электродинамика сплошных сред» и «Физическая кинетика». Во всех этих разделах статистические величины и закономерности выводятся из элементарных законов, рассмотренных в первом томе этого курса теоретической физики.
#physics #физика #подборка_книг #наука #лекции #science #курс_физики
💡 Physics.Math.Code // @physics_lib
📕 Из описания к тому I:
В книге изложены три раздела теоретической физики: «Механика», «Электродинамика» и «Квантовая механика». В каждом из этих разделов автор формулирует наиболее общие принципы и законы, из которых как следствия получаются частные законы и уравнения.
📕 Из описания к тому II:
В книге изложены четыре раздела теоретической физики: «Статистическая физика», «Гидродинамика и газовая динамика», «Электродинамика сплошных сред» и «Физическая кинетика». Во всех этих разделах статистические величины и закономерности выводятся из элементарных законов, рассмотренных в первом томе этого курса теоретической физики.
#physics #физика #подборка_книг #наука #лекции #science #курс_физики
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🧲 Сохранение магнитного поля или хитрый трюк? Почему тяжело расцепить металлические бруски?
Сталь (железо, Fe) является ферромагнетиком. А при пропускании тока через провод, вокруг последнего образуется вихревой поле, которое выстраивает доменные структуры ферромагнетика таким образом, что два куска стали становятся магнитами.
У железа велика μ — магнитная проницаемость, поэтому такие бруски могут стать неплохими магнитами. В размагниченном состоянии ферромагнитный объект состоит из доменов (участков величиной в десятки микрометров), в которых магнитные моменты атомов Pm направлены одинаково даже при отсутствии внешнего поля, но у соседних доменов суммарные магнитные моменты могут быть направлены в разных направления. Поэтому суммарный магнитный момент равен 0. Железный образец, который вобрал в себя магнитное поле, стал намагниченным. Намагниченный ферромагнитный материал отличается тем, что поля отдельных доменов устанавливаются по направлению внешнего магнитного поля.В итоге поля доменов суммируются и образуется сильно поле намагниченной детали.
#физика #электродинамика #задачи #магнетизм #physics #science
💡 Physics.Math.Code // @physics_lib
Сталь (железо, Fe) является ферромагнетиком. А при пропускании тока через провод, вокруг последнего образуется вихревой поле, которое выстраивает доменные структуры ферромагнетика таким образом, что два куска стали становятся магнитами.
У железа велика μ — магнитная проницаемость, поэтому такие бруски могут стать неплохими магнитами. В размагниченном состоянии ферромагнитный объект состоит из доменов (участков величиной в десятки микрометров), в которых магнитные моменты атомов Pm направлены одинаково даже при отсутствии внешнего поля, но у соседних доменов суммарные магнитные моменты могут быть направлены в разных направления. Поэтому суммарный магнитный момент равен 0. Железный образец, который вобрал в себя магнитное поле, стал намагниченным. Намагниченный ферромагнитный материал отличается тем, что поля отдельных доменов устанавливаются по направлению внешнего магнитного поля.В итоге поля доменов суммируются и образуется сильно поле намагниченной детали.
#физика #электродинамика #задачи #магнетизм #physics #science
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
Двухтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.
Один из первых патентов на двухтактный двигатель был выдан в 1881 году шотландскому инженеру Дугладу Клерку. Его двигатель состоял из двух цилиндров: рабочего и нагнетательного. Впервые двухтактный двигатель с камерной продувкой, не требующей дополнительных поршней предложил английский изобретатель Джозеф Дей в 1891 году и в дальнейшем доработан одним из его подчинённых, Фредериком Коком. Независимо от них в 1879 году Карл Бенц построил двухтактный газовый двигатель, на который получил патент в 1880 году. В 1907 году двухтактный дизель водяного охлаждения с противоположно-движущимися поршнями с двумя коленвалами был построен на Коломенском заводе. Для продувки использовался один из цилиндров. Конструктор, главный инженер Коломенского завода Раймонд Александрович Корейво, 6 ноября 1907 года запатентовал двигатель во Франции, потом демонстрировал его на международных выставках. Дизели Корейво серийно использовались при постройке теплоходов. В 1908 году двухтактный двигатель нашёл применение на построенном Альфредом Скоттом[англ.] из Йоркшира мотоцикле — это был двухцилиндровый двухтактный двигатель с водяным охлаждением.
Сравнение двухтактного и четырёхтактного двигателя: Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжёлых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.
В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 — 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более). Также, невыгодна и более низкая экологичность двухтактных бензиновых двигателей - вместе с топливом в цилиндр поступает и специальное масло, которое также подвергается сгоранию, выделяя ядовитые продукты горения и пиролиза. Выхлоп двухтактных бензиновых двигателей более токсичен, чем у четырëхтактных.
⚙️ W-образный двигатель
⚙️ Как связано давление масла в ДВС и капитальный ремонт двигателя?
⚙️ Роторный двигатель
⚙️ Работающая модель одноцилиндрового бензинового мини двигателя
⚙️ Самым мощным и большим в мире двигателем для морских судов является...
⚙️ Кто изобрел ДВС ?
#двс #механика #техника #физика #physics #science #инженерия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Нарушение магнитного потока в трансформаторах
▪️ Перегрев первичной цепи
#физика #электродинамика #задачи #магнетизм #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📿 Задача по логике от Microsoft [2 шнура]
У Вас есть два шнура (фитиля). Каждый шнур, подожженный с конца, полностью сгорает дотла ровно за один час, но при этом горит с неравномерной скоростью. Как при помощи этих шнуров и зажигалки отмерить время в 45 минут?
#алгоритмы #математика #задачи #логика #code #computer_science
💡 Physics.Math.Code // @physics_lib
У Вас есть два шнура (фитиля). Каждый шнур, подожженный с конца, полностью сгорает дотла ровно за один час, но при этом горит с неравномерной скоростью. Как при помощи этих шнуров и зажигалки отмерить время в 45 минут?
#алгоритмы #математика #задачи #логика #code #computer_science
💡 Physics.Math.Code // @physics_lib
📙 Основы теории транзисторов и транзисторных схем [1977] Степаненко И. П.
💾 Скачать книгу
Глава первая. Полупроводники
Глава вторая. Полупроводниковые диоды
Глава третья. Разновидности полупроводниковых диодов
Глава четвертая. Транзисторы
Глава пятая. Разновидности транзисторов
Глава шестая. Статический режим усилительного каскада
Глава седьмая. Усилители с емкостной связью
Глава восьмая. Обратная связь в усилителя
Глава девятая. Эмиттерные повторители
Глава десятая. Каскад с эмиттерным входом
Глава одиннадцатая. Усилители с трансформаторной связью
Глава двенадцатая. Мощные выходные каскады
Глава тринадцатая. Усилители постоянного тока 13-1. Введение
Глава четырнадцатая. Дифференциальный каскад
Глава пятнадцатая. Транзисторные ключи
Глава шестнадцатая. Симметричный триггер
Глава семнадцатая. Триггер с эмиттерной связью
Глава восемнадцатая. Мультивибраторы
Глава девятнадцатая. Одновибраторы
Глава двадцатая. Блокинг-генератор
Глава двадцать первая. Генераторы пилообразного напряжения
Глава двадцать вторая. Преобразователи постоянного напряжения
Глава двадцать третья. Стабилизаторы напряжения
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Глава первая. Полупроводники
Глава вторая. Полупроводниковые диоды
Глава третья. Разновидности полупроводниковых диодов
Глава четвертая. Транзисторы
Глава пятая. Разновидности транзисторов
Глава шестая. Статический режим усилительного каскада
Глава седьмая. Усилители с емкостной связью
Глава восьмая. Обратная связь в усилителя
Глава девятая. Эмиттерные повторители
Глава десятая. Каскад с эмиттерным входом
Глава одиннадцатая. Усилители с трансформаторной связью
Глава двенадцатая. Мощные выходные каскады
Глава тринадцатая. Усилители постоянного тока 13-1. Введение
Глава четырнадцатая. Дифференциальный каскад
Глава пятнадцатая. Транзисторные ключи
Глава шестнадцатая. Симметричный триггер
Глава семнадцатая. Триггер с эмиттерной связью
Глава восемнадцатая. Мультивибраторы
Глава девятнадцатая. Одновибраторы
Глава двадцатая. Блокинг-генератор
Глава двадцать первая. Генераторы пилообразного напряжения
Глава двадцать вторая. Преобразователи постоянного напряжения
Глава двадцать третья. Стабилизаторы напряжения
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
Основы_теории_транзисторов_и_транзисторных_схем_1977_Степаненко.djvu
8.9 MB
📙 Основы теории транзисторов и транзисторных схем [1977] Степаненко И. П.
В книге проводятся анализ и расчет основных типов транзисторных усилителей, импульсных схем и источников питания. Анализу схем предшествует рассмотрение физических процессов в полупроводниковых диодах и транзисторах и характеристик диодов и транзисторов в качестве схемных элементов. Существенно переработана по сравнению с третьим изданием, вышедшим в 1973 г., первая часть книги, во вторую и третью части введены новые главы.
Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания. Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
В книге проводятся анализ и расчет основных типов транзисторных усилителей, импульсных схем и источников питания. Анализу схем предшествует рассмотрение физических процессов в полупроводниковых диодах и транзисторах и характеристик диодов и транзисторов в качестве схемных элементов. Существенно переработана по сравнению с третьим изданием, вышедшим в 1973 г., первая часть книги, во вторую и третью части введены новые главы.
Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания. Книга предназначена для инженеров, аспирантов и студентов вузов, специализирующихся по микроэлектронике и прикладной электронике, вычислительной технике, автоматике и приборостроению.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
📕 Основы микроэлектроники [2001] Степаненко И.П.
💾 Скачать книгу
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Степаненко Игорь Павлович — автор учебного пособия для студентов вузов «Основы микроэлектроники». В 1965 году создал в МИФИ первую в СССР кафедру микроэлектроники. Также И. П. Степаненко написал книгу «Основы теории транзисторов и транзисторных схем», в которой проводит анализ и расчёт основных типов транзисторных усилителей, импульсных схем и источников питания.
#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
Основы_микроэлектроники_2001_Степаненко_И_П_.pdf
46.4 MB
📕 Основы микроэлектроники [2001] Степаненко И.П.
Со времени выхода в свет первого издания учебного пособия для студентов вузов «Основы микроэлектроники» прошло почти двадцать лет. За эти годы труд Игоря Павловича Степаненко, скончавшегося в 1982 г., оказал добрую помощь нескольким поколениям выпускников русскоязычных вузов и студентам, осваивавшим основы микроэлектроники на английском и испанском языках. К сожалению, в настоящее время книга И.П. Степаненко стала библиографической редкостью.
И.П. Степаненко справедливо считал, что инженеру-физику, специализирующемуся по микроэлектронике, необходимо свободно ориентироваться в трех ее базовых составляющих: физических, технологических и схемотехнических основах микроэлектронных приборов и структур.
Методология изложения и фактический материал «Основ микроэлектроники» бережно сохранены в новом издании, поэтому мы считаем И. П. Степаненко основным автором книги. Настоящее издание подготовлено учениками и соратниками И.П. Степаненко, создавшего в 1965 г. в МИФИ первую в СССР кафедру микроэлектроники. Естественно, что данное издание – не простое повторение материала прошлых лет. В учебное пособие включены новые фундаментальные достижения в области микроэлектроники, используемые сейчас на практике.
В настоящем издании авторы старались учесть новые веяния в организации учебного процесса, в частности, свободное посещение студентами лекций. Так, в конце каждого раздела приведены контрольные вопросы для самостоятельной проработки.#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
Со времени выхода в свет первого издания учебного пособия для студентов вузов «Основы микроэлектроники» прошло почти двадцать лет. За эти годы труд Игоря Павловича Степаненко, скончавшегося в 1982 г., оказал добрую помощь нескольким поколениям выпускников русскоязычных вузов и студентам, осваивавшим основы микроэлектроники на английском и испанском языках. К сожалению, в настоящее время книга И.П. Степаненко стала библиографической редкостью.
И.П. Степаненко справедливо считал, что инженеру-физику, специализирующемуся по микроэлектронике, необходимо свободно ориентироваться в трех ее базовых составляющих: физических, технологических и схемотехнических основах микроэлектронных приборов и структур.
Методология изложения и фактический материал «Основ микроэлектроники» бережно сохранены в новом издании, поэтому мы считаем И. П. Степаненко основным автором книги. Настоящее издание подготовлено учениками и соратниками И.П. Степаненко, создавшего в 1965 г. в МИФИ первую в СССР кафедру микроэлектроники. Естественно, что данное издание – не простое повторение материала прошлых лет. В учебное пособие включены новые фундаментальные достижения в области микроэлектроники, используемые сейчас на практике.
В настоящем издании авторы старались учесть новые веяния в организации учебного процесса, в частности, свободное посещение студентами лекций. Так, в конце каждого раздела приведены контрольные вопросы для самостоятельной проработки.#physics #физика #электроника #электричество #магнетизм #электродинамика #схемотехника
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
Возможно вы не знаете этого, но фракталы, подобно воздуху которым вы дышите, всегда находятся рядом с нами. Их нерегулярные повторяющиеся формы обнаруживаются в плывущих облаках, ветвях деревьев, форме кочанов капусты брокколи, скалистых горных пиках, даже в сердечном ритме. В этом фильме NOVA отправляет своего зрителя в захватывающее приключение вместе с группой безумных математиков, задавшихся целью найти законы, управляющие геометрией фракталов.
Столетиями фрактало-подобные формы считались находящимися за пределами математического понимания. Сегодня математики наконец-то начали наносить на карту эту неизведанную страну. Эта потрясающая находка дала нам более глубокое понимание природы и позволила раздвинуть границы доступного для наших научных, медицинских и художественных возможностей, от понимания экологии тропических лесов до изобретения новых покроев модной одежды. Этот фильм рассказывает о дизайнерах одежды, специалистах по спецэффектам, физиках и исследователях, которым удалось добиться успеха благодаря использованию фрактальной геометрии.
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы #science
💡 Physics.Math.Code // @physics_lib
Страна: США, PBS Nova
Режиссер: Michael Schwarz, Bill Jersey / Михаэль Шварц, Билл Джерси
Возможно вы не знаете этого, но фракталы, подобно воздуху которым вы дышите, всегда находятся рядом с нами. Их нерегулярные повторяющиеся формы обнаруживаются в плывущих облаках, ветвях деревьев, форме кочанов капусты брокколи, скалистых горных пиках, даже в сердечном ритме. В этом фильме NOVA отправляет своего зрителя в захватывающее приключение вместе с группой безумных математиков, задавшихся целью найти законы, управляющие геометрией фракталов.
Столетиями фрактало-подобные формы считались находящимися за пределами математического понимания. Сегодня математики наконец-то начали наносить на карту эту неизведанную страну. Эта потрясающая находка дала нам более глубокое понимание природы и позволила раздвинуть границы доступного для наших научных, медицинских и художественных возможностей, от понимания экологии тропических лесов до изобретения новых покроев модной одежды. Этот фильм рассказывает о дизайнерах одежды, специалистах по спецэффектам, физиках и исследователях, которым удалось добиться успеха благодаря использованию фрактальной геометрии.
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы #science
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Водород считается одним из наиболее перспективных видов топлива и зарекомендовал себя как эффективный и экологически чистый энергоноситель. С практической точки зрения горение водорода связано с его использованием в энергетических установках и топливных элементах и безопасностью соответствующих технологических процессов и устройств. Удельная теплота сгорания водорода составляет примерно 140 МДж/кг (верхняя) или 120 МДж/кг (нижняя), что в несколько раз превышает удельную теплоту сгорания углеводородных топлив (для метана — около 50 МДж/кг).
Смеси водорода с кислородом или воздухом взрывоопасны и называются гремучим газом. При зажигании искрой или другим источником смесь водорода с воздухом небольшого объёма сгорает чрезвычайно быстро, с громким хлопком, что субъективно воспринимается как взрыв. В физике горения такой процесс считается медленным горением, или дефлаграцией, однако гремучий газ способен и к детонации, при этом действие взрыва оказывается существенно более сильным.
Наиболее взрывоопасны смеси с составом, близким к стехиометрическому, в стехиометрической смеси на один моль кислорода приходится два моля водорода, то есть, с учётом того, что в воздухе соотношение кислорода и азота и других не участвующих в горении газов по объёму составляет примерно 21 % : 79 % = 1:3,72, то объёмное соотношение водорода с воздухом в гремучем газе в стехиометрическом соотношении составляет ≈0,42. Однако гремучий газ способен гореть в широком диапазоне концентраций водорода в воздухе, от 4—9 объёмных процентов в бедных смесях и до 75 % в богатых смесях. Приблизительно в этих же пределах он способен и детонировать.
#физика #химия #опыты #эксперименты #physics #science #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM