Грокаем C++
8.37K subscribers
34 photos
1 video
3 files
458 links
Два сеньора C++ - Владимир и Денис - отныне ваши гиды в этом дремучем мире плюсов.

По всем вопросам - @ninjatelegramm

Менеджер: @Spiral_Yuri
Реклама: https://telega.in/c/grokaemcpp
Мы на TGstat: https://tgstat.ru/channel/@grokaemcpp/stat
Download Telegram
​​Странный размер std::unordered_map
#опытным

Стандартная ситуация. Создаем контейнер, резервируем подходящий размер для ожидаемого количества элементов в коллекции и запихиваем элементы. Все просто. Но это с каким-нибудь вектором все просто. А хэш-мапа - дело нетривиальное. Смотрим на код:

constexpr size_t map_size = 6;
std::unordered_map<int, int> mymap;
mymap.reserve(map_size);
for (int i = 0; i < map_size; i++) {
mymap[i] = i;
}
std::cout << "mymap has " << mymap.bucket_count() << " buckets\n";


Все, как обычно. А теперь вывод:

mymap has 7 buckets


WTF? Я же сказал выделить в мапе 6 бакетов, а не 7. Какой непослушный компилятор!

Вообще, поведение странное, но может там просто всегда +1 по какой-то причине?

Поменяем map_size на 9 и посмотрим вывод:

mymap has 11 buckets


Again. WTF? Уже на 2 разница. Нужна новая гипотеза... Попробуем третье число. Возьмем 13.

mymap has 13 buckets


А тут работает! Но это не прибавляет понимания проблемы... В чем же дело?

Из цппреференса про метод reserve:
Request a capacity change

Sets the number of buckets in the container (bucket_count) to the most appropriate to contain at least n elements.


То есть стандарт разрешает реализациям выделять больше элементов для мапы, чем мы запросили.

Легитимацию безобразия мы получили, но хотелось бы внятное объяснение причины предоставления такой возможности.

Реализации обычно выбирают bucket_count исходя из соображений быстродействия(как обычно). Тут они выбирают из двух опций:

1️⃣ Выбирают в качестве bucket_count степень двойки, то есть округляют до степени двойки в большую сторону. Это помогает эффективно маппить результат хэш функции на размер самой хэш-таблицы. Можно просто сделать битовое И и отбросить все биты, старше нашей степени. Что делается на один цикл цпу.

Но этот способ имеет негативный эффект в виде того же отбрасывания битов. То есть эти страшие биты никак не влияют на маппинг хэша на бакеты, то уменьшает равномерность распределения.

Таким способом пользуется Visual C++.

2️⃣ Поддерживают bucket_count простым числом.

Это дает крутой эффект того, что старшие биты также влияют на распределение объектов по бакетам. В этом случае даже плохие хэш-функции имеют более равномерное размещение бакетов.

Однако наивная реализация такого подхода заставляет каждый раз делить на рантаймовое значение bucket_count, что может занимать до 100 раз больше циклов.
Более быстрой альтернативой может быть использование захардкоженой таблицы простых чисел. Индекс в ней выбирается на основе запрашиваемого значения bucket_count. Таким образом компилятор может заоптимизировать деление по модулю через битовые операции, сложения, вычитания и умножения. Можете посмотреть на эти оптимизации более подробно на этом примере в годболт.

Этой реализацией пользуется GCC и Clang.

Вот такие страсти происходят у нас под носом под капотом неупорядоченной мапы.

Optimize everything. Stay cool.

#STL #optimization #compiler
​​Как посмотреть шаблонный тип
#новичкам

Вчера Антон сделал важное замечание, что неплохо бы показать, как самому посмотреть, во что выводится тип Т в каждом конкретном случае. Собсна, погнали.

В С++ стандартными средствами конечно можно это сделать, но решение будет довольно громоздкое и некрасивое с точки зрения пользователя.

Хотелось бы что-то очень простое, желательно вообще однострочное. Обычно таких решений в плюсах нет и надо городить огород, но не в этом случае. Благодаря обширным возможностям препроцессора компиляторы зачастую определяют свои макросы, которые раскрываются в сигнатуру функции. В случае же с шаблонной функцией, они показывают и правильный выведенный шаблонный тип.

Для шланга и гцц этот макрос называется __PRETTY_FUNCTION__, а для msvc - __FUNCSIG__. Пользоваться ими можно примерно так:

#if defined __clang__ || __GNUC__
#define FUNCTION_SIGNATURE __PRETTY_FUNCTION__
#elif defined __FUNCSIG__
#define FUNCTION_SIGNATURE __FUNCSIG__
#endif

template<class T>
void func(const T& param) {
std::cout << FUNCTION_SIGNATURE << std::endl;
}

func(std::vector<int>{});


Для кланга вывод будет такой:
void func(const T &) [T = std::vector<int>]


Для msvc:
void __cdecl func<class std::vector<int,class std::allocator<int> >>(const class std::vector<int,class std::allocator<int> > &)


Тут на мой взгляд msvc предоставляет несколько более полный и понятный функционал, но кому как удобно.

Можете поиграться в годболте.

See through things. Stay cool.

#compiler #template
​​Что на самом деле представляют собой short circuit операторы?

Мы уже узнали, что операторы && и || для кастомных типов - простые функции. Для функций существует гарантия вычисления всех аргументов перед тем как функция начнет выполняться. Поэтому перегруженные версии этих операторов и не проявляют своих короткосхемных свойств. Однако операторы && и || для тривиальных типов - другое дело и имеют такие свойства. Но почему? Как это так работает в одном случае и не работает в другом? Давайте разбираться.

Во-первых(и в-единственных), операторы для тривиальных типов - это не функции. Они сразу превращаются в определенную последовательность машинных команд. Так как у нас теперь нет ограничения, что мы должны вычислить все аргументы сразу, то и похимичить можно уже знатно.

Если подумать, то логика тут очень похожа на вложенные условия. Если первое выражение правдиво, переходим в вычислению второго, если нет, то выходим из условия(это для &&). И если еще подумать, то у нас и нет никаких других средств это сделать, кроме джампов(условных переходов к метке). Покажу, во что примерно компиляторы С/С++ преобразуют выражение содержащее оператор &&. Не настаиваю на достоверность и точность. Объяснение больше для понимание происходящих процессов.

Вот есть у нас такой код


if (expr1 && expr2 && expr3) {  
// cool operation
} else { 
// even cooler operation
}
// the coolest operation


Он преобразуется примерно вот в такое:


if (!expr1) goto do_even_cooler_operation; 
if (!expr2) goto do_even_cooler_operation; 
if (!expr3) goto do_even_cooler_operation; 

{
// cool operation
goto do_the_coolest_operation;


do_even_cooler_operation: 

// even cooler operation


do_the_coolest_operation:
// the coolest operation

Что здесь происходит. Входим в первое условие и если оно ложное(то есть expr1 - true), то проваливаемся дальше в следующее условие и делаем так, пока наши выражения правдивые. Если они в итоге все оказались правдивыми, то мы входим в блок выполняющий клевую операцию и дальше прыгаем уже наружу первоначального условия и выполняем самую клевую операцию. Если хоть одно из выражений expr оказалось ложным, то мы переходим по метке и выполняем еще круче операцию и естественным образом переходим к выполнению самой крутой операции. Прикол здесь в трех условиях. Так как они абсолютно не связаны друг другом и последовательны, то следующее по счету выражение просто не будет выполняться, пока выполнение не дойдет до него. Таким образом и обеспечиваются последовательные вычисления слева направо.

То есть встроенные операторы && и || разворачиваются вот с такую гармошку условий. Надеюсь, для кого-то открыл глаза, как это работает)

See what's under the hood. Stay cool.

#compiler #cppcore
​​Целочисленные переполнения

Переполнения интегральных типов - одна из самых частых проблем при написании кода, наряду с выходом за границу массива и попыткой записи по нулевому указателю. Поэтому важно знать, как это происходит и какие гарантии при этом нам дает стандарт.

Для беззнаковых типов тут довольно просто. Переполнение переменных этих типов нельзя в полной мере назвать переполнением, потому что для них все операции происходят по модулю 2^N. При "переполнении" беззнакового числа происходит его уменьшение с помощью деления по модулю числа, которое на 1 больше максимально доступного значения данного типа(то есть 2^N, N - количество доступных разрядов). Но это скорее не математическая операция настоящего деления по модулю, а следствие ограниченного размера ячейки памяти. Чтобы было понятно, сразу приведу пример.

Вот у нас есть число UINT32_MAX. Его бинарное представление - 32 единички. Больше просто не влезет. Дальше мы пробуем прибавить к нему единичку. Чистая и незапятнанная плотью компьютеров математика говорит нам, что в результате должно получится число, которое состоит из единички и 32 нулей. Но у нас в распоряжении всего 32 бита. Поэтому верхушка просто отрезается и остаются только нолики.

Захотим мы допустим пятерку, бинарное представление которой это 101, прибавить к UINT32_MAX. Произойдет опять переполнение. В начале мы берем младший разряд 5-ки и складываем его с UINT32_MAX и уже переполненяемся, получаем ноль. Осталось прибавить 100 в двоичном виде к нолю и получим 4. Как и полагается.

И здесь поведение определенное, известное и стандартное. На него можно положиться.

Но вот что со знаковыми числами?

Стандарт говорит, что переполнение знаковых целых чисел - undefined behaviour. Но почему?

Ну как минимум потому что стандарт отдавал на откуп компиляторам выбор представления отрицательных чисел. Как ранее мы обсуждали, выбирать приходится между тремя представлениями: обратный код, дополнительный код и метод "знак-амплитуда".

Так вот во всех трех сценариях результат переполнения будет разный!

Возьмем для примера дополнительный код и 4-х байтное знаковое число. Ноль выглядит, как 000...00, один как 000...01 и тд. Максимальное значение этого типа INT_MAX выглядит так: 0111...11 (2,147,483,647). Но! Когда мы прибавляем к нему единичку, то получаем 100...000, что переворачиваем знаковый бит, число становится отрицательным и равным INT_MIN.

Однако для обратного кода те же рассуждения приводят к тому, что результатом вычислений будет отрицательный ноль!

Ситуация здесь на самом деле немного поменялась с приходом С++20, который сказал нам, что у нас теперь единственный стандартный способ представления отрицательных чисел - дополнительный код. Об этих изменениях расскажу в следующем посте.

Don't let the patience cup overflow. Stay cool.

#cpp20 #compiler #cppcore
​​Проверяем на целочисленное переполнение

По просьбам трудящихся рассказываю, как определить, произошло переполнение или нет.

Почти очевидно, что если переполнение - это неопределенное поведение, то мы не хотим, чтобы оно возникало. Ну или хотя бы хотим, чтобы нам сигнализировали о таком событии и мы что-нибудь с ним сделали.

Какие вообще бывают переполнения по типу операции? Если мы складываем 2 числа, то их результат может не влезать в нужное количество разрядов. Вычитание тоже может привести к переполнению, если оба числа будут сильно негативные(не будьте, как эти числа). Умножение тоже, очевидно, может привести к overflow. А вот деление не может. Целые числа у нас не могут быть по модулю меньше единицы, поэтому деление всегда неувеличивает модуль делимого. Значит и переполнится оно не может.

И какая радость, что популярные компиляторы GCC и Clang уже за нас сделали готовые функции, которые могут проверять на signed integer overflow!

bool __builtin_add_overflow(type1 a, type2 b, type3 *res);
bool __builtin_sub_overflow(type1 a, type2 b, type3 *res);
bool __builtin_mul_overflow(type1 a, type2 b, type3 *res);


Они возвращают false, если операция проведена штатно, и true, если было переполнение. Типы type1, type2 и type3 должны быть интегральными типами.

Пользоваться функциями очень просто. Допустим мы решаем стандартную задачку по перевороту инта. То есть из 123 нужно получить 321, из 7493 - 3947, и тд. Задачка плевая, но есть загвоздка. Не любое число можно так перевернуть. Модуль максимального инта ограничивается двумя миллиадрами с копейками. Если у входного значения будут заняты все разряды и на конце будет 9, то перевернутое число уже не влезет в инт. Такие события хотелось бы детектировать и возвращать в этом случае фигу.

std::optional<int32_t> decimal_reverse(int32_t value) {
int32_t result{};
while (value) {
if (__builtin_mul_overflow(result, 10, &result) or
__builtin_add_overflow(result, value % 10, &result))
return std::nullopt;
value /= 10;
}
return result;
}

int main() {
if (decimal_reverse(1234567891).has_value()) {
std::cout << decimal_reverse(1234567891).value() << std::endl;
} else {
std::cout << "Reversing cannot be perform due overflow" << std::endl;
}

if (decimal_reverse(1234567894).has_value()) {
std::cout << decimal_reverse(1234567894).value() << std::endl;
} else {
std::cout << "Reversing cannot be perform due overflow" << std::endl;
}
}

// OUTPUT:
// 1987654321
// Reversing cannot be perform due overflow


Use ready-made solutions. Stay cool.

#cppcore #compiler
Как компилятор определяет переполнение

В прошлом посте я рассказал, как можно детектировать signed integer overflow с помощью готовых функций. Сегодня рассмотрим, что ж за магия такая используется для таких заклинаний.

Сразу с места в карьер. То есть в ассемблер.

Есть функция

int add(int lhs, int rhs) {
int sum;
if (__builtin_add_overflow(lhs, rhs, &sum))
abort();
return sum;
}


Посмотрим, во что эта штука компилируется под гцц х86.

Все немного упрощаю, но в целом картина такая:

    mov %edi, %eax
add %esi, %eax
jo call_abort
ret
call_abort:
call abort

Подготавливаем регистры, делаем сложение. А далее идет инструкция jo. Это условный прыжок. Если условие истино - прыгаем на метку call_abort, если нет - то выходим из функции.

Инструкция jo выполняет прыжок, если выставлен флаг OF в регистре EFLAGS. То есть Overflow Flag. Он выставляется в двух случаях:

1️⃣ Если операция между двумя положительными числами дает отрицательное число.

2️⃣ Если сумма двух отрицательных чисел дает в результате положительное число.

Можно считать, что это два условия для переполнения знаковых чисел. Например

127 + 127 = 0111 1111 + 0111 1111 = 1111 1110 = -2 (в дополнительном коде)

Результат сложения двух положительных чисел - отрицательное число, поэтому при таком сложении выставится регист OF.

Для беззнаковых чисел тоже кстати есть похожий флаг. CF или Carry Flag. Мы говорили, что переполнение для беззнаковых - не совсем переполнение, но процессор нам и о таком событии дает знать через выставление carry флага.

Собственно, вы и сами можете детектировать переполнение подобным образом. Конечно, придется делать асемблерную вставку, но тем не менее.

Но учитывая все условия для overflow, есть более простые способы его задетектить, чисто на арифметике. Но об этом позже.

Detect problems. Stay cool.

#base #cppcore #compiler
​​Signed Integer overflow

Переполнение знаковых целых чисел - всегда было и остается болью в левой булке. Раньше даже стандартом не было определено, каким образом отрицательные числа хранились бы в памяти. Однако с приходом С++20 мы можем смело утверждать, что стандартом разрешено единственное представление отрицательных чисел - дополнительный код или two's complement по-жидоанглосаксонски. Казалось бы, мы теперь знаем наверняка, что будет происходить с битиками при любых видах операций. Так давайте снимем клеймо позора с переполнения знаковых интов. Однако не все так просто оказывается.

С приходом С++20 только переполнение знаковых чисел вследствие преобразования стало определенным по стандарту поведением. Теперь говорится, что, если результирующий тип преобразование - знаковый, то значение переменной никак не изменяется, если исходное число может быть представлено в результирующем типе без потерь.
В обратном случае, если исходное число не может быть представлено в результирующем типе, то результирующим значением будет являться остаток от деления исходного значения по модулю 2^N, где N - количество бит, которое занимает результирующий тип. То есть результат будет получаться просто откидыванием лишних наиболее значащих бит и все!

Однако переполнение знаковых интов вследствие арифметических операций до сих пор является неопределенным поведением!(возмутительно восклицаю). Однако сколько бы возмущений не было, все упирается в конкретные причины. Я подумал вот о каких:

👉🏿 Переносимость. Разные системы работают по разным принципам и UB помогает поддерживать все системы оптимальным образом. Мы могли бы сказать, что пусть переполнение знаковых интов работает также как и переполнение беззнаковых. То есть получалось бы просто совершенно другое неожиданное (ожидаемое с точки зрения стандарта, но неожиданное для нас при запуске программы) значение. Однако некоторые системы просто напросто не продуцируют это "неправильное значение". Например, процессоры MIPS генерируют CPU exception при знаковом переполнении. Для обработки этих исключений и получения стандартного поведения было бы потрачено слишком много ресурсов.

👉🏿 Оптимизации. Неопределенное поведение позволяет компиляторам предположить, что переполнения не произойдет, и оптимизировать код. Действительно, если УБ - так плохо и об этом знают все, то можно предположить, что никто этого не допустит. Тогда компилятор может заняться своим любимым делом - оптимизировать все на свете.
Очень простой пример: когда происходит сравнение a - 10 < b -10, то компилятор может просто убрать вычитание и тогда переполнения не будет и все пойдет, как ожидается.

Так что УБ оставляет некий коридор свободы, благодаря которому могут существовать разные сценарии обработки переполнения: от полного его игнора до включения процессором "сирены", что произошло что-то очень плохое.

Leave room for uncertainty in life. Stay cool.

#cpp20 #compiler #cppcore
​​Достигаем недостижимое

В прошлом посте вот такой код:

int main() {
while(1);
return 0;
}

void unreachable() {
std::cout << "Hello, World!" << std::endl;
}


Приводил к очень неожиданным сайд-эффектам. При его компиляции клангом выводился принт, хотя в функции main мы нигде не вызываем unreachable.

Темная магия это или проделки ГосДепа узнаем дальше.

Для начала, этот код содержит UB. Согласно стандарту программа должна производить какие-то обозримые эффекты. Или завершиться, или работать с вводом-выводом, или работать с volatile переменными, или выполнять синхронизирующие операции. Это требования forward progress. Если программа ничего из этого не делает - код содержит UB.

Так вот у нас пустой бесконечный цикл. То есть предполагается, что он будет работать бесконечно и ничего полезного не делать.

Тут очень важно понять одну вещь. Компилятор следует не вашей логике и ожиданиям, как должна работать программа. У него есть фактически инструкция(стандарт), которой он следует.

По стандарту программа, содержащая бесконечные циклы без side-эффектов, содержит UB и компилятор имеет право делать с этим циклом все, что ему захочется.

В данном случае он просто удаляет цикл. Но он не только удаляет цикл. Но еще и удаляет инструкцию возврата из main.

В нормальных программах функция main в ассемблере представляет из себя следующее:

main:
// Perform some code
ret


ret - инструкция возврата из функции. И код функции main выполняется, пока не достигнет этой инструкции.

Так вот в нашем случае этой инструкции нет и код продолжает выполнение дальше. А дальше у нас очень удобненько расположилась функция с принтом, вывод которой мы и видим. Выглядит это так:

main:

unreachable():
push rax
mov rdi, qword ptr [rip + std::cout@GOTPCREL]
lea rsi, [rip + .L.str]
call std::basic_ostream<char, std::char_traits<char>>...


Почему удаляется return - не так уж очевидно и для самих разработчиков компилятора. У них есть тред обсуждения этого вопроса, который не привел к какому-то знаменателю. Так что не буду городить догадок.

Справедливости ради стоит сказать, что в 19-м шланге поменяли это поведение и теперь таких неожиданностей нет.

Stay predictable. Stay cool.

#fun #cppcore #compiler
​​Разница инициализаций

После вчерашнего поста у некоторых читателей мог возникнуть резонный вопрос. Почему глобальные переменные инициализируются автоматически, а локальные - нет? Не легче ли было установить какое-то одно правило для всех?

Единые правила - хорошая вещь. И как многие хорошие вещи, они чего-то стоят. А в С++ есть такой девиз: "мы не платим за то, что не используем". Мне не всегда нужно задавать значение переменной. Иногда меня это вообще не интересует. Я могу создать неинициализированную переменную и передать ее в функцию, где ей присвоится конкретное значение.

int i;
FillUpVariable(i);


Чтобы ответить на вопрос из начала поста, давайте посмотрим, чем мы вообще платим за инициализацию в обоих случаях.

Рассмотрим локальные переменные.

В сущности, они являются просто набором байт на текущем фрейме стека. И программа интерпретирует эти байты, как наши локальные переменные.

Чтобы инициализировать локальную переменную, нужно положить нолик в каждый байтик, который ассоциирован с этой переменной. И так нужно делать каждый раз при каждом вызове функции. Итого стоимость инициализации: немножко кода на зануление памяти при каждом входе в скоуп переменной.

Теперь глобальные переменные

Они инициализируются всего один раз при старте программы. Соответственно, стоимость - немножко кода 1 раз при старте программы.

Причем обычно, когда мы говорим про какие-то затраты и перфоманс, мы говорим о времени, когда программа уже делает полезную работу. То есть инициализация глобальных переменных проходит в "бесплатное" с точки зрения производительности время.

Итого мы получаем, что предварительная установка значений глобальных переменных проходит для нас фактически бесплатно, а для локальных переменных мы тратимся на каждый вход в скоуп переменной.

Теперь представьте, что мы бы потребовали устанавливать валидное значение всегда. Это просто неэффективно. Да и не нужно.

Кстати, на самом деле zero-инициализация глобальных переменных может обходится нам действительно бесплатно. И никаких кавычек! Но об этом в следующем посте.

Be effective. Stay cool.

#cppcore #compiler
​​Бесплатная zero-инициализация

Вчера я сказал, что иногда в самой программе может попросту отсутствовать код по занулению неинициализированных глобальных переменных. Сегодня разберем, за счет чего это может достигаться.

Во время старта программы ей необходимо выделить память под такие вещи, как стек, кучу, код самой программы и глобальные переменные. Память программе предоставляет операционная система. Ну и естественно, что в эту память раньше была записана какая-то информация. Вообще говоря, потенциально конфиденциальная. То есть раньше был какой-то процесс, который писал информацию в память, завершился, и теперь ее отдают другому процессу.

И что получается, наш новорожденный процесс может видеть какую-то конфиденциальную информацию? Это же большая уязвимость.

Может ли операционная система опираться на честность человека, написавшего код, или на компилятор, что кто-то из них останется приличным парнем и сам занулит всю выданную программе память? В большинстве случаев может. Но здесь очень важны исключения, которых быть не должно.

Поэтому ОС никому не доверяет и сама зануляет всю память, которую выдает новому процессу.

Компилятор/линкер при формировании бинарника собирает все неинициализированные переменные вместе в одну секцию с названием .bss.

Получается, при старте программы у ОС запрашивается память в том числе под секцию .bss, и эта память уже аллоцируется зануленной! И никакого кода не нужно, за нас все делает операционка.

Важное уточнение, что такое поведение наблюдается не у всех операционок. Да, все эти ваши винды, линуксы и прочие макоси зануляют память перед ее передачей другому процессу. Но для каких-нибудь микроконтроллеров это может быть неактуально и компилятор должен честно вставить код зануления для того, чтобы соблюсти требования стандарта.

В чате последние пару дней были бурные обсуждения того, что этого зануления может и не быть. Ну как бы, может и не быть. Только тогда компилятор будет противоречить стандарту. И пользоваться им можно на свой страх и риск.

Don't reveal secrets. Stay cool.

#OS #compiler #cppcore
​​Почему тогда локальные переменные не зануляются?

Вчера мы разобрали, что когда операционка выдает процессу память, она ее зануляет. Тогда получается, что сегмент глобальных данных автоматически заполнен нулями.

Но возникает вопрос: раз ОС такая молодец и зануляет всю память, то почему локальные переменные и куча заполнены мусором? Какие-то двойные стандарты.

Все на самом деле немножко сложнее.

Есть такое понятие, как "zero-fill on demand". Заполнение нулями по требованию.

Когда процесс запрашивает память под свои сегменты, стек и кучу, ОС на самом деле не дает ему реальные страницы памяти. А дает "виртуальные". То есть ничего не аллоцирует по факту. Такие страницы заполнены нулями.

Процесс может свободно читать эти страницы и будет действительно видеть там нули. Однако это не будет физической памятью. Как только процесс захочет что-то записать в нее, только тогда операционка разрождается, реально аллоцирует физическую страницу и копирует в нее содержимое той виртуальной страницы. То есть заполняет физическую нулями.

И так она делает один раз на каждую физическую страницу.

Вот как появляются нули в реальной памяти. Теперь почему они не остаются навсегда.

Дело в том, что процесс переиспользует свою память. Программа в течение всей своей жизни использует один и тот же стек и кучу.

Мы выделили маллоком массив байт, попользовали его и освободили. И эта память не вернулась операционке. Процесс может ее переиспользовать. Да, изначально, при попытке записи в эти байты, ОС выдавала зануленные страницы. Но после того, как мы ими попользовались, там уже лежат наши данные. И с точки зрения куска программы, которая в следующий раз получит эту память, там уже лежит "мусор". Но это просто данные из предыдущей аллокации.

Также и локальные переменные. Мы выполнили одну функцию, вернулись обратно, и выполняя следующую функцию, мы будем переиспользовать память стека под локальные переменные.

Именно поэтому кстати, мы можем очень легко получить доступ к данным, которые лежали на стеке ранее:

void fun1() {
int initialize = 10;
std::cout << initialize << std::endl;
}

void fun2() {
int uninitialize;
std::cout << uninitialize << std::endl;
}

int main() {
fun2();
fun1();
fun2();
}


Возможный вывод такого кода:

32760
10
10


Обратите внимание, что, вызывая функцию с переменной uninitialize в первый раз, мы получили мусор. Однако после вызова func1, где переменная инициализирована, в памяти стека на месте, где лежала initialize будет лежать число 10. Так как сигнатуры и содержимое функций в целом идентичны, то uninitialize во второй раз будет располагаться на том же самом месте, где и была переменная initialize. Соответственно, она будет содержать то же значение.

А учитывая, что до пользовательского кода выполняется некий "скрытый код", то даже в "начале" программы вы будете видеть на стеке мусор.

Reuse resources. Stay cool.

#OS #compiler
​​std::cout

Кажется, что на начальном этапе становления про-с++-ером, вывод в использование конструкции:

std::cout << "Print something in consol\n";


воспринимается, как "штука, которая выводит текст на консоль".

Даже со временем картинка не до конца складывается и на вопрос "что такое std::cout?", многие плывут. Сегодня закроем этот вопрос.

В этой строчке мы вызываем такой оператор:

std::ostream& operator<< (std::ostream& stream, const char * str)


Получается, что std::cout - объект класса std::ostream. И ни какой-то там временный. Раз он принимается по левой ссылке, значит он уже где-то хранится в памяти.

Но мы же ничего не делаем для его создания? Откуда он взялся?

Мы говорили о том, что есть "невидимые" для нас вещи, которые происходят при старте программы. Так вот, это одна из таких вещей.

std::cout - глобальный объект типа std::ostream. За его создание отвечает класс std::ios_base::Init, инстанс которого явно или неявно определяется в библиотеке <iostream>.

Но это все слова. И новичкам будет достаточно этого. Но мы тут глубоко закапываемся, поэтому давайте закопаемся в код.

Полазаем по исходникам gcc. Ссылочки кликабельные для пытливых умов.

А в хэдэре iostream мы можем найти вот это:

extern istream cin;  ///< Linked to standard input
extern ostream cout; ///< Linked to standard output
extern ostream cerr; ///< Linked to standard error (unbuffered)
extern ostream clog; ///< Linked to standard error (buffered)
...
static ios_base::Init __ioinit;


Здесь определяются символы стандартных потоков и создается глобальная переменная класса ios_base::Init. Пойдемте тогда в конструктор:

ios_base::Init::Init()
{
if (__gnu_cxx::__exchange_and_add_dispatch(&_S_refcount, 1) == 0)
{
// Standard streams default to synced with "C" operations.
_S_synced_with_stdio = true;

new (&buf_cout_sync) stdio_sync_filebuf<char>(stdout);
new (&buf_cin_sync) stdio_sync_filebuf<char>(stdin);
new (&buf_cerr_sync) stdio_sync_filebuf<char>(stderr);

// The standard streams are constructed once only and never
// destroyed.
new (&cout) ostream(&buf_cout_sync);
new (&cin) istream(&buf_cin_sync);
new (&cerr) ostream(&buf_cerr_sync);
new (&clog) ostream(&buf_cerr_sync);
cin.tie(&cout);
cerr.setf(ios_base::unitbuf);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 455. cerr::tie() and wcerr::tie() are overspecified.
cerr.tie(&cout);
...
__gnu_cxx::__atomic_add_dispatch(&_S_refcount, 1);


Немножко разберем происходящее.

В условии проверяется ref_count, чтобы предотвратить повторную инициализацию. Так как не предполагается, что такие объекты, как cout будут удалены, они просто создаются через placement new с помощью инстансов stdio_sync_filebuf<char>. Это внутренний буфер для объектов потоков, который ассоциирован с "файлами" stdout, stdin, stderr. Буферы как раз и предназначены для получения/записи io данных.

Хорошо. Мы видим как и где создаются объекты. Но это же placement new. Для объектов уже должная быть подготовлена память для их размещения. Где же она?

В файлике globals_io.cc:

 // Standard stream objects.
// NB: Iff <iostream> is included, these definitions become wonky.
typedef char fake_istream[sizeof(istream)]
attribute ((aligned(alignof(istream))));
typedef char fake_ostream[sizeof(ostream)]
attribute ((aligned(alignof(ostream))));
fake_istream cin;
fake_ostream cout;
fake_ostream cerr;
fake_ostream clog;


то есть, объекты - это пустые символьные массивы правильного размера и выравнивания.

Все это должно вам дать довольно полное представление, что такое стандартные потоки ввода-вывода.

#cppcore #compiler
​​Линкуем массивы к объектам

Опытные читатели могли заметить кое-что странное в этом посте. И заметили кстати. Изначально cin, cout и тд определены, как простые массивы. А в iostream они уже становятся объектами потоков и линкуются как онные. То есть в одной единице трансляции

extern std::ostream cout;
extern std::istream cin;
...


А в другой

 // Standard stream objects.
// NB: Iff <iostream> is included, these definitions become wonky.
typedef char fake_istream[sizeof(istream)]
attribute ((aligned(alignof(istream))));
typedef char fake_ostream[sizeof(ostream)]
attribute ((aligned(alignof(ostream))));
fake_istream cin;
fake_ostream cout;
fake_ostream cerr;
fake_ostream clog;


Что за приколы такие? Почему массивы нормально линкуются на объекты кастомных классов?

В С++ кстати запрещены такие фокусы. Типы объявления и определения сущности должны совпадать.

Все потому что линкер особо не заботится о типах, выравнивании и даже особо о размерах объектов. То есть я буквально могу прилинковать объект одного кастомного класса к другому и мне никто никакого предупреждения не влепит. Такой код вполне нормально компилится и запускается:

// header.hpp
#pragma once

struct TwoFields {
int a;
int b;
};

struct ThreeFields {
char a;
int b;
long long c;
};

// source.cpp

ThreeFields test = {1, 2, 3};

// main.cpp

#include <iostream>
#include "header.hpp"

extern TwoFields test;

int main() {
std::cout << test.a << " " << test.b << std::endl;
}


На консоли появится "1 2". Но ни типы, ни размеры типов, ни выравнивания у объектов из объявления и определения не совпадают. Поэтому здесь явное UB.

Но в исходниках GCC так удачно сложилось, что массивы реально представляют собой идеальные сосуды для объектов io-потоков. На них даже сконструировали реальные объекты. Поэтому такие массивы можно интерпретировать как сами объекты.

Это, естественно, все непереносимо. Но поговорка "спички детям - не игрушка" подходит только для тех, кто плохо понимает, что делает. А разработчики компилятора явно не из этих ребят.

Take conscious risks. Stay cool.

#cppcore #compiler
​​Что происходит до main?

Рассмотрим простую программу:

#include <iostream>
#include <random>

int a;
int b;

int main() {
a = rand();
b = rand();
std::cout << (a + b);
}


Все очень просто. Объявляем две глобальные переменные, в main() присваиваем им значения и выводим их сумму на экран.

Скомпилировав эту программу, мы сможем посмотреть ее ассемблер и увидеть просто набор меток, соответствующих разным сущностям кода(переменным a и b, функции main). Но вы не увидите какого-то "скрипта". Типа как в питоне. Если питонячий код не оборачивать в функции, то мы точно будем знать, что выполнение будет идти сверху вниз. Так вот, такой простыни ассемблера вы не увидите. Код будет организован так, как будто бы им кто-то будет пользоваться.

И это действительно так! Убирая сложные детали, можем увидеть вот такое:

a:
.zero 4

b:
.zero 4

main:

push rbp
mov rbp, rsp
call rand
...
call std::basic_ostream<char, std::char_traits<char> >::operator<<(int)
mov eax, 0
pop rbp
ret


Суть программы состоит из меток. Метки нужны, чтобы обращаться к сущностям программы. Да, они и внутри основного кода используются. Но то, что на главной функции стоит метка, говорит нам о том, что ее кто-то вызывает!

Но даже до того, как начнет работу сущность, которая вызывает main, нужно проделать большую работу по подготовке программы к исполнению. Давайте просто перечислю, что должно быть сделано:

💥 Программа загружается в оперативную память.

💥 Аллокация памяти для стека. Для исполнения функций и хранения локальных переменных обязательно нужен стек.

💥 Аллокация памяти для кучи. Для программы нужна дополнительная память, которую она берет из кучи.

💥 Инициализация регистров. Там их большое множество. Например, нужно установить текущий указатель на вершину стека(stack pointer), указатель на инструкции(instruction pointer) и тд.

💥 Замапить виртуальное адресное пространство процесса. Процессы не работают с железной памятью напрямую. Они делают это через абстракцию, называемую виртуальная память.

💥 Положить на стек аргументы argc, argv(мб envp). Это аргументы для функции main.

💥 Загрузка динамических библиотек. Программа всегда линкуется с разными динамическими либами, даже если вы этого явно не делаете)

💥 Вызов всякий преинициализирующих функций.

Важная оговорка, что это все суперсильное упрощение. В реале все намного сложнее. Не претендую на полноту изложения и правильность порядка шагов. К тому же я говорю только про эквайромент полноценных ОС типа окон и пингвина. В эмбеде могут быть сильные отличия. Обязательно оставляйте свои дополнения процесса старта программы в комментариях.

В этих полноценных осях всю эту грязную работу на себя берет загрузчик программ.
После того, как эти шаги выполнены, загрузчик может вызывать ту самую функцию _start(название условное, зависит от реализации).

Она уже выполняет более прикладные чтоли вещи:

👉🏿 Статическая инициализация глобальных переменных. Это и недавно обсуждаемая zero-инициализация и константная инициализация(когда объект инициализирован константным выражением). То есть инициализируется все, что можно было узнать на этапе компиляции.

👉🏿 Динамическая инициализация глобальных объектов. Выполняется код конструкторов глобальных объектов.

👉🏿 Инициализация стандартного ввода-вывода. Об этом мы говорили тут.

👉🏿 Инициализация еще бог знает чего. Начальное состояние рандомайзера, malloc'а и прочего. Так-то это часть первых шагов, но привожу отдельно, чтобы вы не думали, что только ваши глобальные переменные инициализируются.

И только вот после этого всего, когда состояние программы приведено в соответствие с ожиданиями стандарта С++, функция _start вызывает main.

Так что, чтобы вы смогли выполнить свою программу, кому-то нужно очень мощно поднапрячься...

See what's underneath. Stay cool.

#OS #compiler
​​Фикс баги с инициализацией инта

В прошлом посте говорили об одной неприятности при использовании универсальной инициализации интов. При таком написании:

auto i = {0};

i будет иметь тип std::initializer_list<int>.

С++17 исправил такое поведение. Но для полного понимания мы должны определить два способа инициализации: копирующая и прямая. Приведу примеры

  auto x = foo();  // копирующая инициализация
auto x{foo()}; // прямая инициализация,
// проинициализирует initializer_list (до C++17)
int x = foo(); // копирующая инициализация
int x{foo()}; // прямая инициализация

Для прямой инициализации вводятся следующие правила:

• Если внутри скобок 1 элемент, то тип инициализируемого объекта - тип объекта в скобках.
• Если внутри скобок больше одного элемента, то тип инициализируемого объекта просто не может быть выведен.

Примеры:

auto x1 = { 1, 2 }; // decltype(x1) -  std::initializer_list<int> 
auto x2 = { 1, 2.0 }; // ошибка: тип не может быть выведен,
// потому что внутри скобок объекты разных типов
auto x3{ 1, 2 }; // ошибка: не один элемент в скобках
auto x4 = { 3 }; // decltype(x4) - std::initializer_list<int>
auto x5{ 3 }; // decltype(x5) - int


Этот фикс компиляторы реализовали задолго до того, как стандарт с++17 был окончательно утвержден. Поэтому даже с флагом -std=c++11 вы можете не увидеть некорректное поведение. Оно воспроизводится только на древних версиях. Можете убедиться тут.

Fix your flaws. Stay cool.

#cpp11 #cpp17 #compiler
​​Как header only либы обходят ODR
#новичкам

В С++ есть одно очень важное правило, которое действует при компиляции и линковке программы. Это правило одного определения. Или One Definition Rule(ODR). Оно говорит о том, что во всей программе среди всех ее единиц трансляции должно быть всего одно определение сущности.

Действительно, если будут 2 функции с одинаковыми названиями, но разной реализацией, то непонятно, какую из них выбрать для линковки с использующим функцию кодом.

Тогда встает вопрос: А как тогда header-only библиотеки обходят это требование? Сами посудите, подключаем какую-нибудь json заголовочную либу, везде ее используем, линкуем программу и все как-то работает. Хотя во многих единицах трансляции есть определение одних и тех же сущностей.

В чем подвох?

Подвоха нет. Даже так, чисто заголовочная природа библиотеки это не совсем цель, а возможно простое следствие. Следствие того, что часто библиотеки напичканы шаблонами по самые гланды. А шаблоны просто вынуждены находиться в хэдэрах, ничего уж тут не поделаешь. У нас даже целый пост про это есть.

Сами посмотрите на некоторые примеры: cereal для сериализации, nlohmann для json'ов, почти весь Boost. Там все жестко шаблонами и измазано.

А там, где шаблоны неприменимы можно использовать inline|static функции и поля класса, а также анонимные пространства имен .

В общем, в С++ есть много средств обхода ODR и ими всеми активно пользуются header-only библиотеки.

Bypass the rules. Stay cool.

#compiler #design
​​Дедлокаем один поток
#опытным

Мы привыкли, что для дедлоков нужно несколько потоков. Не удивительно. Давайте прочитаем определение дедлока по Коффману. Там речь про процессы, но если поменять слово "процесс" на "поток" ничего не изменится. Ну и перевод будет вольный.

Дедлок - это ситуация в коде, когда одновременно выполняются все следующие условия:

А ну, мальчики, играем поочереди. Только один поток может получить доступ к ресурсу в один момент времени.

У меня уже есть красный паровозик, но я хочу синий!. Поток в настоящее время хранит по крайней мере один ресурс и запрашивает дополнительные ресурсы, которые хранятся в других потоках.

Я тебя захватил, я тебя и отпущу. Ресурс может быть освобожден только добровольно потоком, удерживающим его.

Все: Я хочу твой паровозик! Каждый поток должен ждать ресурс, который удерживается другим потоков, который, в свою очередь, ожидает, когда первый поток освободит ресурс. В общем случае ждунов может быть больше двух. Важно круговое ожидание.

Судя по этому определению, минимальное количество потоков, чтобы накодить дедлок - 2.

Но это такая общая теория работы с многозадачностью в программах.

Определение оперирует общим термином ресурс. И не учитывает поведение конкретного ресурса и деталей его реализации. А они важны!

Возьмем пресловутый мьютекс. Что произойдет, если я попытаюсь его залочить дважды в одном потоке?

std::mutex mtx;
mtx.lock();
mtx.lock();


Стандарт говорит, что будет UB. То есть поведение программы неопределено, возможно она заставит Ким Чен Ира спеть гангам стайл.

Возможно, но обычно этого не происходит. Программа в большинстве случаев ведет себя по одному из нескольких сценариев.

1️⃣ Компилятор имплементировал умный мьютекс, который может задетектить double lock и, например, кинуть в этом случае исключение.

2️⃣ Мьютекс у нас обычный, подтуповатый и он делает ровно то, что ему говорят. А именно пытается залочить мьютекс. Конечно у него ничего не получится и он вечно будет ждать его освобождения. Результат такого сценария - дедлок одного потока одним мьютексом!

Результат не гарантирован стандартом, но мой код под гццшкой именно так себя и повел. Поэтому теперь у вас есть еще один факт, которым можно понтануться перед коллегами или на собесах.

Be self-sufficient. Stay cool.

#concurrency #cppcore #compiler
​​No new line

Оказывается, чтобы получить неопределенное поведение даже необязательно писать какой-то плохой код. Достаточно просто не добавить перенос строки в конце подключаемого файла!

Небольшой пример:

Файлик foo.hpp:

// I love code
// I love C++<no newline>

Файлик bar.cpp:

#include "foo.hpp"
#include "baz.hpp"


А теперь вспоминаем, что препроцессор вставляет все содержимое хэдера на место инклюда И(!) не вставляет после него символ конца строки. То есть спокойно может получится следующее:

// I love code
// I love C++#include "baz.hpp"


То есть включение baz.hpp может быть полностью заэкранировано.
Учитывая, сколько всего препроцессор может делать с кодом, комбинации вариантов развития событий могут быть абсолютно разными.

Стандарт нам говорит:
... If a source file that is not empty does not end in a new-line character,
or ends in a new-line character immediately preceded by a backslash
character before any such splicing takes place, the behavior is undefined.


Так что ub без кода - вполне существующая вещь.

Или уже нет?

На самом деле приведенная цитата была из стандарта 2003 года.

С++11 пофиксил эту проблему и обязал препроцессоры вставлять new line в конце подключаемых файлов:

A source file that is not empty and that does not end in a new-line character, 
or that ends in a new-line character immediately preceded by a backslash
character before any such splicing takes place, shall be processed
as if an additional new-line character were appended to the file.


Так что теперь проблемы нет.

Решил написать об этом, просто потому что очень весело, что в плюсах можно было такими неочевидными способами отстрелить себе конечность.

Ну и хорошо, что стандарт все-таки не только новую функциональность вводит, а фиксит вот такие вот недоразумения.

Fix your flaws. Stay cool.

#compiler
Передача объекта в методы по значению
#опытным

Небольшие типы данных, особенно до 8 байт длиной, быстрее передавать в методы или возвращать из методов по значению.

С помощью deducing this мы можем вызывать методы не для ссылки(под капотом которой указатель), а для значения объекта.

Семантика будет ровно такая, как вы ожидаете. Объект скопируется внутрь метода и все операции будут происходить над копией.

Давайте посмотрим на пример:

struct just_a_little_guy {
int how_small;
int uwu();
};

int main() {
just_a_little_guy tiny_tim{42};
return tiny_tim.uwu();
}


Здесь используется старая нотация с неявным this.

Посмотрим, какой код может нам выдать компилятор:

sub     rsp, 40                           
lea rcx, QWORD PTR tiny_tim$[rsp]
mov DWORD PTR tiny_tim$[rsp], 42
call int just_a_little_guy::uwu(void)
add rsp, 40
ret 0


Пройдемся по строчкам и посмотрим, что тут происходит:

- первая строчка аллоцирует 40 байт на стеке. 4 байта для объекта tiny_tim, 32 байта теневого пространства для метода uwu и 4 байта паддинга.
- инструкция lea загружает адрес tiny_tim в регистр rcx, в котором метод uwu ожидает свой неявный параметр.
- mov помещает число 42 в поле объекта tiny_tim.
- вызываем функцию-метод uwu
- наконец деаллоцируем памяти и выходим из main

А теперь применим deducing this с параметром по значению и посмотрим на ассемблер:

struct just_a_little_guy {
int how_small;
int uwu(this just_a_little_guy);
};


Ассемблер:

mov     ecx, 42                           
jmp static int just_a_little_guy::uwu(this just_a_little_guy)


Мы переместили 42 в нужный регистр и сразу же прыгнули в функцию uwu, а не вызвали ее. Поскольку мы не передаем объект в метод по ссылке, нам ничего не нужно аллоцировать на стеке. А значит и деаллоцировать ничего не нужно. Раз нам не нужно за собой подчищать, то можно просто прыгнуть в функцию и не возвращаться оттуда.

Конечно, это искусственный пример, оптимизация есть и мы можем в целом ожидать, то объекты маленьких типов можно быстрее обрабатывать с помощью deducing this.

Optimize yourself. Stay cool.

#cpp23 #optimization #compiler
Неочевидное преимущество шаблонов
#новичкам

Давайте немного разбавим рассказ о фичах 23-го стандарта чем-нибудь более приземленным

Мы знаем, что шаблоны используются как лекарство от повторения кода, а также как средство реализации полиморфизма времени компиляции. Но неужели без них нельзя обойтись?

Можно и обойтись. Возьмем хрестоматийный пример std::qsort. Это скоммунизденная реализация сишной стандартной функции qsort. Сигнатура у нее такая:

void qsort( void *ptr, std::size_t count, std::size_t size, /* c-compare-pred */* comp );
extern "C" using /* c-compare-pred */ = int(const void*, const void*);
extern "C++" using /* compare-pred */ = int(const void*, const void*);


Как видите, здесь много void * указателей на void. В том числе с помощью него достигается полиморфизм в С(есть еще макросы, но не будем о них).

Как это работает?

Функция qsort спроектирована так, чтобы с ее помощью можно было сортировать любые POD типы. Но не хочется как-то пеерегружать функцию сортировки для всех потенциальных типов. Поэтому придумали обход. Передавать void указатель, чтобы мочь обрабатывать данные любых типов. Но void* - это нетипизированный указатель, поэтому фунции нужно знать размер типа данных, которые она сортирует, и количество данных. А также предикат сравнения.

Вот тут немного поподробнее. Предикат для интов может выглядеть примерно так:

[](const void* x, const void* y)
{
const int arg1 = *static_cast<const int*>(x);
const int arg2 = *static_cast<const int*>(y);
const auto cmp = arg1 <=> arg2;
if (cmp < 0)
return -1;
if (cmp > 0)
return 1;
return 0;
}


Предикату не нужно передавать размер типа, потому что он сам знает наперед с каким данными он работает и сможет закастить void* к нужному типу.

Вот в этом предикате и проблема. Функция qsort не знает на этапе компиляции, с каким предикатом она будет работать. Поэтому компилятор очень ограничен в оптимизации этой части: он не может заинлайнить код компаратора в код qsort. На каждый вызов компаратора будет прыжок по указателю функции. Это примерна та же причина, по которой виртуальные вызовы дорогие.

Тип шаблонных параметров, напротив, известен на этапе компиляции.

template< class RandomIt, class Compare >
void sort( RandomIt first, RandomIt last, Compare comp );


Значит код компаратора шаблонной функции может быть включен в код сортировки. Именно поэтому функция std::sort намного быстрее std::qsort при включенных оптимизациях(а без них примерно одинаково)

Казалось бы плюсы, а быстрее сишки. И такое бывает, когда используешь шаблоны.

Use advanced technics. Stay cool.

#template #goodoldc #goodpractice #compiler