Media is too big
VIEW IN TELEGRAM
🧲⚡️Задачка по физике [электродинамика и магнетизм] для наших подписчиков: Почему поезд приходит в движение? Откуда возникает сила, толкающая вперед?
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
2🔥30❤15👍11⚡2❤🔥1👏1🆒1
📚 Фейнмановские лекции по физике [1976-1978] 💫
💾 Скачать книги
Это попытка одного из величайших умов XX века не просто изложить физику, но и передать особый, «фейнмановский» способ мышления о природе.
▪️ Не для абсолютных новичков. Несмотря на все старания Фейнмана сделать материал доступным, это очень плотный и сложный курс. Человеку без какой-либо базовой подготовки по математике и физике (на уровне старших классов физмат-школы или 1-2 курса вуза) будет крайне тяжело.
▪️ Не лучший выбор для «натаскивания» на экзамены. Если ваша цель — быстро решить сотню типовых задач для зачета, «Фейнмановские лекции» — не ваш инструмент. Они дают глубокое понимание, но не отрабатывают навык решения стандартных упражнений. Для этого лучше подходят классические задачники (вроде Иродова или Савельева).
▪️ Некоторые темы изложены нестандартно. Подход Фейнмана часто уникален и может расходиться с каноническим изложением в других учебниках. С одной стороны, это гениально, с другой — может вызвать путаницу у студента, который готовится к экзамену по конкретной программе.
▪️ Физика своего времени. Лекции были прочитаны в 1960-х годах. С тех пор физика ушла далеко вперед (например, в области физики элементарных частиц, космологии). Хотя фундамент остался неизменным, современному читателю важно это учитывать.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Это попытка одного из величайших умов XX века не просто изложить физику, но и передать особый, «фейнмановский» способ мышления о природе.
▪️ Не для абсолютных новичков. Несмотря на все старания Фейнмана сделать материал доступным, это очень плотный и сложный курс. Человеку без какой-либо базовой подготовки по математике и физике (на уровне старших классов физмат-школы или 1-2 курса вуза) будет крайне тяжело.
▪️ Не лучший выбор для «натаскивания» на экзамены. Если ваша цель — быстро решить сотню типовых задач для зачета, «Фейнмановские лекции» — не ваш инструмент. Они дают глубокое понимание, но не отрабатывают навык решения стандартных упражнений. Для этого лучше подходят классические задачники (вроде Иродова или Савельева).
▪️ Некоторые темы изложены нестандартно. Подход Фейнмана часто уникален и может расходиться с каноническим изложением в других учебниках. С одной стороны, это гениально, с другой — может вызвать путаницу у студента, который готовится к экзамену по конкретной программе.
▪️ Физика своего времени. Лекции были прочитаны в 1960-х годах. С тех пор физика ушла далеко вперед (например, в области физики элементарных частиц, космологии). Хотя фундамент остался неизменным, современному читателю важно это учитывать.
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
+79616572047 (СБП) 📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг
💡 Physics.Math.Code // @physics_lib
1👍38❤14🔥7❤🔥3⚡3😍1
Фейнмановские лекции по физике.zip
33.9 MB
📚 Фейнмановские лекции по физике [1976-1978]
«Фейнмановские лекции по физике» — это не просто книга, которую нужно «пройти». Это книга, с которой нужно разговаривать, спорить, перечитывать и осмыслять. Она не даст вам легких ответов, но она научит вас задавать правильные вопросы и искать на них ответы так, как это делал великий Фейнман. Это инвестиция в ваше мышление. Безусловная классика, не имеющая аналогов по глубине и стилю изложения. Must-read для каждого, кто серьезно интересуется физикой.
▪️Глубина понимания, а не просто знание. Ричард Фейнман был известен своей способностью видеть сердце проблемы, отбрасывая всё лишнее. Он не дает готовых формул и алгоритмов решения задач. Вместо этого он показывает, как физики мыслят, как они приходят к тем или иным выводам, строят модели и проверяют их. Вы учитесь не «чему», а «как».
▪️Уникальный педагогический подход. Фейнман мастерски начинает с простых, интуитивно понятных вещей (часто с бытовых примеров), а затем шаг за шагом подводит к сложнейшим концепциям. Его объяснения полны аналогий, мысленных экспериментов и ярких метафор, которые врезаются в память. Знаменитая лекция о законе сохранения энергии, начинающаяся с детской игрушки, — тому подтверждение.
▪️Фундаментальность и целостность картины мира. Лекции не являются сборником разрозненных фактов. Фейнман выстраивает единую, логичную структуру физики, от Ньютоновской механики до квантовой электродинамики. Он постоянно показывает связи между разными разделами, демонстрируя, что физика — это не набор отдельных курсов, а единая наука о фундаментальных законах.
▪️Честность и отсутствие догм. Фейнман не скрывает сложностей и «неудобных» мест в физике. Он прямо говорит о том, что наука еще не все знает, где есть пробелы в понимании и какие вопросы остаются открытыми. Эта интеллектуальная честность заразительна и мотивирует на собственные размышления.
▪️Блестящий стиль изложения. Текст сохранил живую, разговорную интонацию Фейнмана. Читая, будто слышишь его голос — энергичный, полный юмора и любви к своему предмету. Это делает даже самый сложный материал увлекательным.
Для кого эти лекции:
— Для студентов 1-3 курсов физико-математических и инженерных специальностей — как основное или дополнительное чтение для формирования глубокого понимания.
— Для преподавателей физики — как неиссякаемый источник вдохновения, идей и блестящих объяснений.
— Для любознательных людей с хорошей технической подготовкой (инженеров, программистов), которые хотят понять, «как устроен этот мир» на фундаментальном уровне.
— Для всех, кто ценит красоту научной мысли и хочет насладиться интеллектуальным стилем одного из гениев современности.
💡 Physics.Math.Code // @physics_lib
«Фейнмановские лекции по физике» — это не просто книга, которую нужно «пройти». Это книга, с которой нужно разговаривать, спорить, перечитывать и осмыслять. Она не даст вам легких ответов, но она научит вас задавать правильные вопросы и искать на них ответы так, как это делал великий Фейнман. Это инвестиция в ваше мышление. Безусловная классика, не имеющая аналогов по глубине и стилю изложения. Must-read для каждого, кто серьезно интересуется физикой.
▪️Глубина понимания, а не просто знание. Ричард Фейнман был известен своей способностью видеть сердце проблемы, отбрасывая всё лишнее. Он не дает готовых формул и алгоритмов решения задач. Вместо этого он показывает, как физики мыслят, как они приходят к тем или иным выводам, строят модели и проверяют их. Вы учитесь не «чему», а «как».
▪️Уникальный педагогический подход. Фейнман мастерски начинает с простых, интуитивно понятных вещей (часто с бытовых примеров), а затем шаг за шагом подводит к сложнейшим концепциям. Его объяснения полны аналогий, мысленных экспериментов и ярких метафор, которые врезаются в память. Знаменитая лекция о законе сохранения энергии, начинающаяся с детской игрушки, — тому подтверждение.
▪️Фундаментальность и целостность картины мира. Лекции не являются сборником разрозненных фактов. Фейнман выстраивает единую, логичную структуру физики, от Ньютоновской механики до квантовой электродинамики. Он постоянно показывает связи между разными разделами, демонстрируя, что физика — это не набор отдельных курсов, а единая наука о фундаментальных законах.
▪️Честность и отсутствие догм. Фейнман не скрывает сложностей и «неудобных» мест в физике. Он прямо говорит о том, что наука еще не все знает, где есть пробелы в понимании и какие вопросы остаются открытыми. Эта интеллектуальная честность заразительна и мотивирует на собственные размышления.
▪️Блестящий стиль изложения. Текст сохранил живую, разговорную интонацию Фейнмана. Читая, будто слышишь его голос — энергичный, полный юмора и любви к своему предмету. Это делает даже самый сложный материал увлекательным.
Для кого эти лекции:
— Для студентов 1-3 курсов физико-математических и инженерных специальностей — как основное или дополнительное чтение для формирования глубокого понимания.
— Для преподавателей физики — как неиссякаемый источник вдохновения, идей и блестящих объяснений.
— Для любознательных людей с хорошей технической подготовкой (инженеров, программистов), которые хотят понять, «как устроен этот мир» на фундаментальном уровне.
— Для всех, кто ценит красоту научной мысли и хочет насладиться интеллектуальным стилем одного из гениев современности.
💡 Physics.Math.Code // @physics_lib
1❤35👍21🔥9🤯1🤩1💯1
🎲 Бросайте кубики, пока не надоест! Интересная задача по математике 🎲
Представьте, что у вас есть два обычных шестигранных игральных кубика (кости). Вы бросаете их одновременно и записываете сумму выпавших очков. Вы можете остановиться в любой момент. Ваша финальная сумма — это результат последнего броска перед остановкой. Какова оптимальная стратегия остановки, чтобы максимизировать ожидаемое значение финальной суммы, и чему равно это математическое ожидание?
❓ Справятся ли с этой задачи наши физики, математики и айтишники? Ваши ответы, решения и идеи пишите здесь в комментариях. ✍🏻
#математика #теория_вероятностей #математическая_статистика #статистика #math #mathematics #задачи
💡 Physics.Math.Code // @physics_lib
Представьте, что у вас есть два обычных шестигранных игральных кубика (кости). Вы бросаете их одновременно и записываете сумму выпавших очков. Вы можете остановиться в любой момент. Ваша финальная сумма — это результат последнего броска перед остановкой. Какова оптимальная стратегия остановки, чтобы максимизировать ожидаемое значение финальной суммы, и чему равно это математическое ожидание?
#математика #теория_вероятностей #математическая_статистика #статистика #math #mathematics #задачи
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
✍20❤9🤯9🔥5🤔3👍2
This media is not supported in your browser
VIEW IN TELEGRAM
До середины 19 века ночной город погружался во тьму, которую лишь кое-как рассеивали тусклые газовые рожки и масляные фонари. Но все изменилось с появлением настоящего «электрического солнца» — фонаря с угольной дугой. Это была первая по-настоящему эффективная форма электрического освещения, которая ослепила современников и навсегда изменила представление о ночном городе. В основе фонаря лежало явление вольтовой дуги — особого вида электрического разряда в газе.
▪️ Суть явления: Если два электрода (в нашем случае — угольных стержня) сначала коснуться, а затем немного раздвинуть, между ними продолжает течь электрический ток. Но теперь он проходит не по проводнику, а через ионизированный воздух — плазму.
▪️ Почему она светится: Электрическое поле в зазоре между электродами разгоняет свободные электроны. Эти "разогнанные" электроны сталкиваются с атомами газа (азота, кислорода) и "выбивают" из них другие электроны. Этот процесс называется ионизацией. При столкновениях часть энергии переходит в свет и колоссальное тепло. Температура в центре дуги может достигать 4000 °C — это выше температуры плавления большинства известных материалов.
🔦 Процесс горения дуги: как это работало в фонаре?
1. Зажигание: Фонарщик (или позднее автоматический механизм) сближал два угольных стержня до момента их соприкосновения. По цепи начинал течь ток.
2. Поджиг и разрыв: Концы стержней сильно разогревались из-за высокого сопротивления в точке контакта. Затем механизм немного (на несколько миллиметров) раздвигал стержни.
3. Рождение "солнца": Между раскаленными концами углей возникала та самая вольтова дуга. Воздух ионизировался, и мощный поток света и тепла устремлялся наружу. Свет был настолько ярок, что смотреть на него без защиты было больно для глаз.
4. Стабилизация и выгорание: Угольные стержни постепенно сгорали в этом адском пламени. Чтобы дуга не гасла, сложный механизм (регулятор) постоянно поддерживал идеальное расстояние между ними, медленно сдвигая стержни по мере их испарения.
Почему именно угольные стержни? Почему не медные или железные прутья? Ответ кроется в уникальных свойствах угля (графита):
1. Высокая температура плавления (возгонки): Уголь не плавится, как металл, а сразу переходит из твердого состояния в газообразное (сублимируется) при температуре около 3900 °C. Это одна из самых высоких температур среди известных тогда материалов. Металлический электрод просто расплавился бы и испарился за секунды, в то время как уголь мог относительно стабильно работать в плазме дуги.
2. Эмиссия электронов: Раскаленный уголь является отличным эмиттером электронов. При высоких температурах электроны в его атомах получают достаточно энергии, чтобы "вырваться" с поверхности и устремиться к противоположному электроду. Этот "электронный паром" — основа для поддержания стабильной дуги.
3. Хорошая электропроводность: Чистый уголь (графит) проводит электрический ток, что является обязательным условием для работы.
4. Относительная дешевизна: Угольные стержни было проще и дешевле производить в больших количествах, чем, например, стержни из тугоплавких металлов вроде вольфрама (которые стали использовать позже).
Несмотря на свою яркость, угольные дуговые фонари были неидеальны. Они требовали постоянного обслуживания (замены стержней каждые несколько часов), издавали шипение и характерный запах озона, а главное — были слишком мощными для небольших помещений. Их время пришлось на конец 19 - начало 20 века, когда они освещали главные площади, проспекты и фабрики. Но именно они проложили путь для своей более практичной и долговечной преемницы — лампы накаливания Лодыгина и Эдисона. #физика #опыты #эксперименты #наука #science #physics #электродинамика #видеоуроки #изобретения #радиофизика
⚡️ Фигуры Лихтенберга
🧲 Почему поезд приходит в движение?
📚 Фейнмановские лекции по физике [1976-1978] 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥38❤24👍15⚡11
Media is too big
VIEW IN TELEGRAM
Для понимания процесса нужно записать на черновике два параметрических уравнения, которые получаются, когда кругл «катится» по плоскости:
x = r⋅t - h⋅sin(t)
y = r - h⋅cos(t)
Для эпициклоиды уже сложнее:
x = R⋅(m+1)⋅cos(m⋅t) - h⋅cos((m+1)⋅t)
y = R⋅(m+1)⋅sin(m⋅t) - h⋅sin((m+1)⋅t)
где
m = r/R , R — радиус неподвижной окружности (опорная поверхность), r — радиус катящейся окружности. h — расстояние от центра катящейся окружности до точки маркера (за которой мы следим, точка, которая рисует).Ну а если тут положить
R → ∞ и h → R , то мы получаем уравнения классической циклоиды, график которой описывает крайняя точка на колесе машины, которая едет с постоянной скоростью и без проскальзывания.❓Математические вопросы для наших подписчиков:
▪️ Попробуйте выразить явную зависимость y(x). Получится у вас это сделать?
▪️ На видео видно, что мы получаем семейство кривых, которые после каждого полного «круга» немного смещаются. Для этого смещения обязательно ли число зубьев на маленьком колесе и число зубьев на опорной кривой должны быть взаимно простыми числами? Или достаточно лишь того, чтобы они отличались хотя бы на 1 ?
➰ Красота параметрических кривых
⭕️ Точки пересечения кругов на воде движутся по гиперболе
🕑 Экстремальная задача на смекалку
#математика #mathematics #animation #math #геометрия #geometry #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18❤12👍6🤝4❤🔥3⚡1🌚1
Media is too big
VIEW IN TELEGRAM
Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.
Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥50👍28❤16🤨2🆒2❤🔥1🤓1
🔥 7 видео, которые рассказывают о работе классического теплового двигателя 💨⚙️
Тепловой двигатель — тепловая машина, использующая теплоту от внешних источников (двигатель внешнего сгорания) или получаемую при сгорании топлива внутри двигателя (в камере сгорания или цилиндрах двигателя внутреннего сгорания) для преобразования в механическую энергию (поступательное движение либо вращение выходного вала).
В соответствии с законами термодинамики, такие двигатели имеют коэффициент полезного действия меньше единицы, что означает неполное преобразование теплоты в механическую энергию. Смотря по конструкции двигателя, от 40 % до 80 процентов поступающей (или выделяющейся внутри) энергии покидает машину в виде низкотемпературной теплоты, которая в ряде случаев используется для обогрева салона машины.
Тепловые двигатели внешнего сгорания — Такие двигатели получили распространение раньше, ввиду неприхотливости к виду топлива, более простому устройству, ненужности в ранних вариантах (паровая машина) систем запуска, зажигания, охлаждения. Дали мощный импульс индустриализации, поскольку с их помощью были механизированы шахты, швейные и другие фабрики, затем транспорт (железная дорога). Улучшенные новые схемы таких двигателей обеспечивают мир большей частью вырабатываемой электроэнергии (ТЭС, АЭС, ТЭЦ, солнечные электростанции с нагревом котла). Новейшие модели паровозов до сих пор имеют применение ввиду простоты и потреблению древесной пыли в качестве топлива. Некоторые (двигатель Стирлинга) получили применение в космических кораблях.
💡 Physics.Math.Code // @physics_lib
Тепловой двигатель — тепловая машина, использующая теплоту от внешних источников (двигатель внешнего сгорания) или получаемую при сгорании топлива внутри двигателя (в камере сгорания или цилиндрах двигателя внутреннего сгорания) для преобразования в механическую энергию (поступательное движение либо вращение выходного вала).
В соответствии с законами термодинамики, такие двигатели имеют коэффициент полезного действия меньше единицы, что означает неполное преобразование теплоты в механическую энергию. Смотря по конструкции двигателя, от 40 % до 80 процентов поступающей (или выделяющейся внутри) энергии покидает машину в виде низкотемпературной теплоты, которая в ряде случаев используется для обогрева салона машины.
Тепловые двигатели внешнего сгорания — Такие двигатели получили распространение раньше, ввиду неприхотливости к виду топлива, более простому устройству, ненужности в ранних вариантах (паровая машина) систем запуска, зажигания, охлаждения. Дали мощный импульс индустриализации, поскольку с их помощью были механизированы шахты, швейные и другие фабрики, затем транспорт (железная дорога). Улучшенные новые схемы таких двигателей обеспечивают мир большей частью вырабатываемой электроэнергии (ТЭС, АЭС, ТЭЦ, солнечные электростанции с нагревом котла). Новейшие модели паровозов до сих пор имеют применение ввиду простоты и потреблению древесной пыли в качестве топлива. Некоторые (двигатель Стирлинга) получили применение в космических кораблях.
💡 Physics.Math.Code // @physics_lib
🔥26❤14👍7🤯1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.
#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤18🔥15⚡4🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.
Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.
1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.
Физика в действии: почему именно ртуть?
▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.
Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94❤36🔥18⚡6🤔4🤩4❤🔥1
Media is too big
VIEW IN TELEGRAM
Все, кто видел ЗРК «Куб», наверняка обращали внимание на его остроконечные ракеты. Но что находится внутри этой самой носовой части? Именно там спрятано сердце системы наведения — головка самонаведения (ГСН) 1SB4M. И её описание звучит как магия из 1960-х: непрерывноволновая полуактивная самонаводящаяся когерентная двухплоскостная моноимпульсная ГСН. Разберем эту длинную формулировку по косточкам, чтобы понять гениальность советских инженеров.
▪️ 1. Полуактивная — Это значит, что ракета не освещает цель своим собственным радаром. Цель подсвечивается мощным лучом от станции наведения (СНР 1С91 с машины комплекса). Ракета же лишь «прислушивается» к отраженному от цели сигналу. Экономит энергию и делает систему менее заметной.
▪️ 2. Непрерывноволновая — Станция подсвета излучает не короткие импульсы, а непрерывный сигнал. Это позволяет с очень высокой точностью определять скорость сближения с целью благодаря Допплеровскому эффекту.
▪️ 3. Когерентная — Это сложное слово означает, что все сигналы (исходный и отраженный) согласованы по фазе. Это позволяет системе эффективно отфильтровывать помехи и выделять слабый отраженный сигнал на фоне земной поверхности и прочих шумов.
▪️ 4. Моноимпульсная и двухплоскостная — Сверхточность! Это ключевое преимущество.
➖ Обычные ГСН могли «качать» луч, чтобы поймать цель и строить траекторию, что занимало время.
➖ Моноимпульсная ГСН 1SB4M определяет угловое положение цели практически мгновенно, за один отраженный импульс (отсюда и «моно»).
➖ Двухплоскостная означает, что она делает это одновременно в двух плоскостях — по азимуту (влево-вправо) и по углу места (вверх-вниз). Это позволяет ракете не просто лететь в сторону цели, а строить точнейшую траекторию перехвата.
Вся эта сложная система, упакованная в носовой обтекатель, позволяла ракете 3М9 комплекса «Куб» эффективно бороться с маневрирующими целями на малых и средних высотах. Это была передовая технология для своего времени, обеспечившая «Кубу» грозную репутацию на полях сражений.
1. Ракета не освещает цель сама. Это делает станция наведения с земли. ГСН ракеты лишь «слышит» отраженный от цели сигнал. Здесь в игру вступает Эффект Доплера. Тот самый, из-за которого звук сирены скорой помощи кажется выше при приближении и ниже при удалении. Частота принятого сигнала (f₁) сравнивается с частотой эталонного сигнала (f₀), который ракета знает. Если цель приближается, частота отраженного сигнала повышается. Если цель удаляется — понижается. Разница этих частот (f₁ - f₀ = Δf) называется доплеровским смещением. По его величине ракета с высочайшей точностью вычисляет радиальную скорость сближения с целью. Это позволяло ракете «понимать», что она догоняет маневренный самолет, а не просто летит в пустоту.
2. «Когерентность» означает, что излучаемый и эталонный сигналы имеют строго согласованную, предсказуемую фазу. Представьте себе два идеально ровных ряда солдат, марширующих в ногу. Это — когерентные сигналы. Помехи или отражения от земли — это как толпа, бегущая вразнобой. ГСН 1SB4M была способна выделять слабый, но «стройный» сигнал, отраженный от цели, на фоне мощных, но «нестройных» помех и отражений от подстилающей поверхности. Это достигалось за счет селекции именно по доплеровскому смещению: земля относительно ракеты почти не движется (Δf ≈ 0), а у самолета — значительное смещение. Ракета просто «не видела» мешающие объекты.
3. Моноимпульсная и двухплоскостная = Сверхточное пеленгование. Обычные ГСН того времени определяли направление на цель, «раскачивая» луч и сравнивая силу сигнала в разные моменты времени (метод конического сканирования). Это было медленно и уязвимо для помех. Моноимпульсный метод решает задачу мгновенно. Сравнивая амплитуды и фазы сигналов во всех четырех каналах за один прием импульса (отсюда «моно»), система с высочайшей точностью вычисляет угол между своей осью и направлением на цель. #физика #ракеты #электродинамика #наука #технологии #physics #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍71🔥33❤19⚡3😱3❤🔥2
👨🏻💻 Одна из самых известных ситуаций в теории игр — дилемма заключённого. В ней нет правильных или неправильных решений, и каждый выбирает сам, что ему делать, но некоторые решения могут сделать ситуацию в итоге лучше или хуже. Про это и поговорим.
Оригинальная ситуация, с которой всё началось, описывается так:
• Есть два преступника, их поймала полиция в одно и то же время за очень похожие преступления.
• У полиции есть подозрение, что они действовали в сговоре. Чтобы докопаться до сути, преступников развели по разным камерам и сказали им условия.
• Если один из них даёт показания на другого, а другой молчит, то тот, кто молчит, получает 10 лет, а первого освобождают.
• Если оба дают показания на другого, то каждый получает по 2 года.
• Если оба молчат, то полиция остаётся без доказательств и каждый получает полгода тюрьмы.
• Преступники не могут заранее пообщаться между собой и принять совместное решение, каждый выбирает сам, что ему делать.
🧐 Какое решение выгоднее всего принять каждому из них?
📚 12 лучших книг по теме: Теория Графов
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📔 Теория игр и экономическое поведение [1974] фон Нейман Дж. Моргенштер
📚 12 книг по теме: Математические головоломки и задачи
#математика #логика #теория_игр #math #алгоритмы
💡 Physics.Math.Code // @physics_lib
Оригинальная ситуация, с которой всё началось, описывается так:
• Есть два преступника, их поймала полиция в одно и то же время за очень похожие преступления.
• У полиции есть подозрение, что они действовали в сговоре. Чтобы докопаться до сути, преступников развели по разным камерам и сказали им условия.
• Если один из них даёт показания на другого, а другой молчит, то тот, кто молчит, получает 10 лет, а первого освобождают.
• Если оба дают показания на другого, то каждый получает по 2 года.
• Если оба молчат, то полиция остаётся без доказательств и каждый получает полгода тюрьмы.
• Преступники не могут заранее пообщаться между собой и принять совместное решение, каждый выбирает сам, что ему делать.
🧐 Какое решение выгоднее всего принять каждому из них?
📚 12 лучших книг по теме: Теория Графов
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📔 Теория игр и экономическое поведение [1974] фон Нейман Дж. Моргенштер
📚 12 книг по теме: Математические головоломки и задачи
#математика #логика #теория_игр #math #алгоритмы
💡 Physics.Math.Code // @physics_lib
3👍42❤16🔥8🤔8😱6