Physics.Math.Code
137K subscribers
5.11K photos
1.81K videos
5.78K files
4.2K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i

№ 5535336463
Download Telegram
Media is too big
VIEW IN TELEGRAM
⚙️ Работающая модель одноцилиндрового бензинового мини двигателя

▪️Коэффициент полезного действия современного двигателя 25±5%. Работа ДВС происходит не в идеальных условиях. Рабочая температура двигателя 80-95°. Мотор греет вокруг себя воздух, охлаждающую жидкость, масло, радиатор, выхлоп и другие узлы. На этом теряется около 35%
Хотя современные автомобили и снабжены электронным блоком управления, он не полностью решает проблему того, что топливо сгорает не полностью и его часть выходит вместе с выхлопными газами. Это уже ~25% потерь. Еще 20% забирают механические потери. Поршни, кольца, шестерни и прочие элементы, где присутствует трение.

▪️Первый двигатель был создан в 1804 году. В 1804 году французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый двигатель внутреннего сгорания, который был предназначен для работы с насосом. Современные моторы переняли от него воспламенение топлива с помощью свечей зажигания. Двигатель де Риваза не имел механизма синхронизации, поэтому поступление топлива и зажигание осуществлялось вручную.

▪️Самый большой двигатель имеет объем 1820 литров. Этот дизельный двигатель был создан компанией Wärtsilä и на сегодняшний день является самым большим и самым мощным в мире. Этот малыш весит 2300 тонн, а габариты его 13.5 метров в высоту и 26.6 метров в длину. Его 14 цилиндров выдают 108876 лошадиных сил и 7603850 ньютон-метров крутящего момента.

▪️Самый большой пробег двигателя ~4 800 000 км. Рядный четырех-цилиндровый двигатель 1778 куб.см устанавливался в Volvo P1800 в кузове которого и был накатан мировой рекорд. Расстояние на которое проехал этот автомобиль можно представить как более 100 кругосветных путешествий или 5 расстояний до Луны и обратно. Правда чтобы за это время было проведено 2 капитальных ремонта двигателя.

▪️Самый маленький двигатель имеет рабочий объем цилиндра 1 мм³. Этот двигатель изготовили в Англии, примечательно что для его работы используется не дизельное топливо, а особая смесь метанола и водорода. При этом общий принцип остается такой же, при сжатии горючее воспламеняется передавая энергию на коленвал. При этом коленвал раскручивается до 50 000 оборотов в минуту, а мощность чуть более чем 0,015 лс. Общие размеры мотора составляют 5*15*3 мм, такой двигатель можно расположить на большом пальце руки человека. Добиться этого позволило изготовление ультратонких плоских элементов. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💢 Астроида (от греч. αστρον — звезда и ειδος — вид, то есть звездообразная)— плоская кривая, описываемая точкой окружности радиуса r, катящейся по внутренней стороне окружности радиуса R = 4r. Иначе говоря, астроида — это гипоциклоида с модулем k = 4. Астроида также является алгебраической кривой 1 рода (и шестого порядка).

#математика #math #mathematics #наука #science #алгебра #algebra #видеоуроки

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🎲 Формула Эйлера для простых чисел

f(n) = n² + n + 41 


Наиболее известным многочленом, который генерирует (возможно, по абсолютному значению) только простые числа, является f(n). Есть красивое свойство, что f(n) является простым для [1; 40]. За исключением случаев, когда n = 0
, все эти случаи будут составными (поскольку 41 будет правильным делителем).

Лежандр показал, что не существует рациональной алгебраической функции, которая всегда давала бы простые числа. В 1752 году Гольдбах показал, что ни один многочлен с целыми коэффициентами не может давать простое число для всех целых значений (Nagell 1951, стр. 65; Hardy and Wright 1979, стр. 18 и 22).

Благодаря Эйлеру (Euler 1772; Nagell 1951, стр. 65; Gardner 1984, стр. 83; Ball and Coxeter 1987), который дает различные простые числа для 40 последовательных целых чисел от n = 0 до 39.

Путем преобразования формулы в
f(n) = n² - 79n + 1601 = (n - 40)² + (n - 40) + 41 

простые числа получаются для 80 последовательных целых чисел, соответствующих 40 простым числам, заданным приведенной выше формулой, взятым дважды каждое (Hardy and Wright 1979, стр. 18).
#математика #math #mathematics #наука #science #алгебра #algebra #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
fern.gif
19.1 MB
🌿 Папоротник Барнсли — это фрактал, названный в честь британского математика Майкла Барнсли, который впервые описал его в своей книге Фракталы повсюду. Папоротник является одним из основных примеров самоподобных множеств, т. е. это математически сгенерированный узор, который может быть воспроизведен при любом увеличении или уменьшении. Как и треугольник Серпинского, папоротник Барнсли показывает, как графически красивые структуры могут быть построены на основе повторяющегося использования математических формул с помощью компьютеров.

Хотя папоротник Барнсли теоретически можно нарисовать вручную с помощью ручки и миллиметровой бумаги, количество необходимых итераций исчисляется десятками тысяч, что делает использование компьютера практически обязательным. Множество различных компьютерных моделей папоротника Барнсли пользуются популярностью у современных математиков. Пока математика правильно запрограммирована с использованием матрицы констант Барнсли, будет получаться одна и та же форма папоротника. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔻 Теорема Морли о трисектрисах — одна из теорем геометрии треугольника. Трисектрисами угла называются два луча, делящие угол на три равные части.

Точки пересечения смежных трисектрис углов произвольного треугольника являются вершинами правильного (равностороннего) треугольника.


Теорема была открыта в 1904 году Фрэнком Морли в связи с изучением свойств кубических кривых. Тогда он упомянул об этой теореме своим друзьям, а опубликовал её двадцать лет спустя в Японии. За это время она была независимо опубликована как задача в журнале Educational Times.

▪️ На описанной окружности треугольника ABC существуют ровно три точки, таких что их прямая Симсона касается окружности Эйлера треугольника ABC, причем эти точки образуют правильный треугольник. Стороны этого треугольника параллельны сторонам треугольника Морлея.
▪️ Если рассмотреть также внешние трисектрисы (то есть трисектрисы внешних углов треугольника), то среди точек пересечения этих 12 прямых существует 27 троек точек, образующих правильные треугольники.
▪️ Центр равностороннего треугольника Морли называется первым центром Морли исходного треугольника.
▪️ Равносторонний треугольник Морли перспективен исходному треугольнику; центр перспективы называется вторым центром Морли.

#математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение.

Двигатели должны давать на выходе вращательное движение главного вала. Именно этим роторные ДВС отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент (поршень) совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. В поршневых же моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

С древности известны колёса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. Самый первый тепловой двигатель в истории — эолипил Герона Александрийского (I век н. э.) также относится к роторным двигателям. В XIX веке, вместе с массовым появлением поршневых паровых машин, начинают создаваться и активно использоваться и роторные паровые двигатели. К ним можно отнести как паровые роторные машины с непрерывно открытыми в атмосферу камерами расширения — это паровые турбины, так и паровые машины с герметично запираемыми камерами расширения: к ним, например, можно отнести «коловратную машину» Н. Н. Тверского, которая успешно эксплуатировалась во многих экземплярах в конце XIX века в России.

С началом массового применения ДВС в первые десятилетия XX века начались и работы по попыткам создать эффективный роторный ДВС. Тем не менее эта задача оказалась большой инженерной трудностью, и лишь в 1930-х годах была создана работоспособная дизельная турбина, которая по классификации относится к роторным ДВС с непрерывно открытой в атмосферу камерой сгорания.

Работоспособный роторный ДВС с герметично запираемой камерой сгорания удалось создать лишь в конце 1950-х годов группе исследователей из немецкой фирмы NSU, где Вальтер Фройде и Феликс Ванкель разработали схему роторно-поршневого двигателя.

В отличие от газовых турбин, которые широко и массово применяются уже более 50 лет, роторный двигатель Ванкеля и Фреде не показал очевидных преимуществ перед поршневыми ДВС, а также имел заметные недостатки, которые и сдерживают массовое применение этих моторов в промышленности. Но потенциально широкий набор возможных конструктивных решений создают широкое поле для инженерных поисков, которые уже привели к появлению таких конструкций, как роторно-лопастной двигатель Вигриянова, трёхтактный и пятитактный роторные двигатели Исаева, 2-тактный роторно-поршневой двигатель и весьма перспективный двигатель LiquidPiston. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🤔 Когда после летней деградации пришел в школу и сидишь на контрольной...

#математика #информатика #задачи #fun

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Свечение газов вблизи катушки Тесла⁠⁠

Коллекция газов для спектрального излучения: чистые образцы водорода, азота и пяти благородных инертных газов подвергаются воздействию высокочастотного импульсного поля миниатюрной катушки Тесла. Каждый газ имеет характерное напряжение пробоя и спектр излучения. Обратите внимание, что азот имеет самое высокое напряжение пробоя и светится только в непосредственной близости от катушки, где поле наиболее интенсивно, тогда как у неона и гелия самое низкое напряжение пробоя, и они начинают светиться на большем расстоянии от катушки. Цвет каждого газа обусловлен сочетанием цветов, излучаемых электронными энергетическими переходами, характерными для каждого элемента - основы спектроскопии. Трубка Криптона также демонстрирует интересные колебания с этой конкретной катушкой Теслы. #атомная_физика #химия #физика #physics #видеоуроки #электроника #gif

💡 Physics.Math.Code // @physics_lib
📔 Физика в примерах и задачах [1983] Бутиков Е.И., Быков А.А., Кондратьев А.С.
📚 Физика для углубленного изучения (в 3-х книгах) [2004] Бутиков Е.И., Кондратьев А.С., Уздин В.М.
▪️▪️📕 Том 1. Механика
▪️▪️📗Том 2. Электродинамика. Оптика
▪️▪️📘Том 3. Строение и свойства вещества
📙 Физика для поступающих в вузы [1991] Бутиков Е.И., Быков А.А., Кондратьев А.С.
📓 Элементарная физика [1973] Гурский И.П.


💾 Скачать книги

Для учащихся школ, гимназий, лицеев с углубленным изучением физико-математических дисциплин, а также для подготовки к конкурсным экзаменам в вузы.

Для тех, кто захочет задонать на кофе☕️:
ВТБ: +79616572047 (СБП)
Сбер: +79026552832 (СБП)
ЮMoney: 410012169999048

#подборка_книг #физика #physics #механика #электродинамика #оптика #термодинамика

💡 Physics.Math.Code // @physics_lib
6 книг по физике.zip
89.2 MB
📔 Физика в примерах и задачах [1983] Бутиков, Быков, Кондратьев

Книга занимает промежуточное положение между учебником физики и сборником задач. Цель авторов—научить читателя рассуждать, находить ответы на новые вопросы, относящиеся к известной ему области, довести его до глубокого понимания сути рассматриваемых явлений. В этом издании нашли отражение последние изменения содержания курса физики средней школы и программ конкурсных экзаменов в вузы.

📚 Физика для углубленного изучения (в 3-х книгах) [2004] Бутиков, Кондратьев, Уздин

Учебник принципиально нового типа. Последовательность изложения соответствует логической структуре физики как науки и отражает современные тенденции ее преподавания. Материал разделен на обязательный и дополнительный, что позволяет строить процесс обучения с учетом индивидуальных способностей учащихся, включая организацию их самостоятельной работы. Задачи служат как для получения новых знаний, так и для развития навыков исследовательской деятельности.

📕 Том 1. Механика — В первом томе изучаются основы механики, изложение которой строится с учётом общих методологических принципов физики, таких, как принцип симметрии, относительности, соответствия и т.д.
📗Том 2. Электродинамика. Оптика — Второй том включает в себя основы электродинамики и оптики, изложение которых базируется на фундаментальных представлениях об электромагнитном поле без детализации структуры вещества, рассматриваемого здесь чисто феноменологически.
📘Том 3. Строение и свойства вещества — В третьем томе на основе развития фундаментальных механических и электромагнитных представлений развивается последовательная картина строения и свойств вещества от атома до Вселенной.

📙 Физика для поступающих в вузы [1991] Бутиков, Быков, Кондратьев

Книга представляет собой пособие по курсу физики средней школы. Особое внимание в ней уделяется тем вопросам, которые по тем или иным причинам не изложены в школьном учебнике или изложены там недостаточно глубоко и подробно.

📓 Элементарная физика [1973] Гурский


Книга является пособием по физике для поступающих в вузы, ее можно также использовать как введение в вузовский курс физики. В ней последовательно и кратко рассмотрен весь элементарный курс физики, при этом основное внимание обращено на решение типовых задач и примеров.

💡 Physics.Math.Code // @physics_lib
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
Электромагнитная индукция

Электродинамика — это наука о свойствах и закономерностях особого вида материи – электромагнитного поля, которое осуществляет взаимодействие между электрическими заряженными телами или частицами. Квантовая электродинамика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля.

Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля —фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.

Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся посредством электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля посредством системы уравнений Максвелла; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔴Двойной маятник — простейший механизм для демонстрации хаотичного движения

В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим. Система считается хаотичной, если обладает высокой чувствительностью к начальному состоянию. Две идентичные системы с мало отличающимися начальными положениями будут заметно отличаться спустя какое-то время. #видеоуроки #физика #механика #gif #математика #physics #math #динамика

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🔊 Акустическая левитация — это метод подвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения звуковых волн высокой интенсивности.
Обычно используются звуковые волны на ультразвуковых частотах.

Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif

💡 Physics.Math.Code // @physics_lib
📚 Лекции по сверхвысокочастотной электронике для физиков [2 тома] [2003] Трубецков, Храмов

💾 Скачать книги

Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.

✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика

💡 Physics.Math.Code // @physics_lib
📚_Лекции_по_сверхвысокочастотной_электронике_для_физиков_2_тома.zip
14.5 MB
📚 Лекции по сверхвысокочастотной электронике для физиков [2 тома] [2003] Трубецков, Храмов

Современная сверхвысокочастотная электроника представлена в книге не технической стороной с кратким описанием физики и основ теории различных электронных ламп, а детальным описанием основных физических явлений, возникающих при взаимодействии электронных потоков с электромагнитными полями и лежащих в основе различных типов устройств. В книге уделено большое внимание математическому моделированию на ЭВМ явлений в электронных потоках на сверхвысоких частотах. Изложение ведется так, чтобы показать тесную связь сверхвысокочастотной электроники с современной нелинейной теорией колебаний и волн и теорией излучения. Особенностью книги является то, что в ней определенное место занимает история СВЧ-электроники.

📘 Лекции по сверхвысокочастотной электронике для физиков [Том 1] [2003] Трубецков, Храмов

В первом томе книги излагаются основные понятия, методы и модели "классической" сверхвысокочастотной электроники. Также в нем рассматриваются релятивистские аналоги классических СВЧ-устройств: клистронов, ламп бегущей и обратной волны, приборов со скрещенными полями.

📘 Лекции по сверхвысокочастотной электронике для физиков [Том 2] [2004] Трубецков, Храмов

Во втором томе книги рассматриваются такие современные области исследований в электронике сверхвысоких частот, как взаимодействие криволинейных электронных потоков с электромагнитными волнами (мазеры на циклотронном резонансе), лазеры на свободных электронах, сверхизлучение в электронных потоках, плазменная сверхвысокочастотная электроника, сверхмощные релятивистские генераторы высокочастотного излучения, синхронизация в распределенных системах СВЧ-электроники, вакуумная микроэлектроника. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🔦 Владимир Сурдин: ощущение скорости движения

История определения скорости Света уходит к временам Галилео Галилея. До Галилея скорость Света считалась бесконечной. Галилей первый попытался со своим помощником определить скорость Света. Опыт заключался в том, что Галилей и помощник, находились с фонарями на двух холмах, расстояние между которыми было известным. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. Однако ничего не получилось.

Олаф Ремер, исследуя движение спутника Ио на орбите вокруг Юпитера, заметил задержку прихода Света от спутника при разном положении Земли на орбите. Исходя из этого он определил скорость Света равной 220000км/сек.

Английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыты Майкельсона продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму. Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. #электродинамика #электроника #физика #свет #оптика #волны #колебания #квантовая_физика

💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🪐 Титан (др.-греч. Τιτάν) — крупнейший спутник Сатурна, второй по величине спутник в Солнечной системе (после спутника Юпитера Ганимеда), является единственным, кроме Земли, телом в Солнечной системе, для которого доказано стабильное существование жидкости на поверхности, и единственным спутником планеты, обладающим плотной атмосферой.

Титан стал первым известным спутником Сатурна — в 1655 году его обнаружил голландский астроном Христиан Гюйгенс. Титан был открыт 25 марта 1655 года голландским физиком, математиком и астрономом Христианом Гюйгенсом. Вдохновлённый примером Галилея, Гюйгенс вместе со своим братом Константином создал телескоп, имевший апертуру 57 мм и кратность увеличения более 50 раз.

При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и 4 % метана, атмосферное давление у поверхности в 1,5 раза больше чем у Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне. #космос #астрономия #физика #механика #physics #science #наука #космология

💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔔 Почему не звенит колокольчик из свинца? ❄️

Что представляет из себя колокольный звон, откуда берется? Звон колокола это есть не что иное как вибрация и чем выше частота вибрации тем выше звон. Что представляет из себя свинец? Мягкий пластичный метал. Почему не звонит свинцовый колокол? Что бы колокол зазвонил в нем должна произойти вибрация путем удара по нему языком колокола,а так как свинец мягкий метал он гасит удар языка и вибрация не образуется.

Есть такое понятие, как "коэффициент затухания материала". Естественно, он зависит от температуры. Колокольчик из свинца звенит. Только его звон длиться тысячные доли секунды и на слух воспринимаются как короткий глухой стук. Если смотреть по приборам, то колебания видны, но они с большим декрементом затухания.

#механика #термодинамика #физика #мкт #physics #science #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM