Грокаем C++
5.04K subscribers
5 photos
3 files
259 links
Два сеньора C++ - Владимир и Денис - отныне ваши гиды в этом дремучем мире плюсов.

По всем вопросам - @ninjatelegramm

Менеджер: @Spiral_Yuri
Реклама: https://telega.in/c/grokaemcpp
Мы на TGstat: https://tgstat.ru/channel/@grokaemcpp/stat
Download Telegram
Решение static initialization order fiasco

Раз есть проблема - должно быть и решение. Сегодня поговорим о паре-тройке вариантов. Пост вдохновлен этим комментом нашего подписчика Антона.

Очевидно, что в комментах немного поразгоняли эту тему. Поэтому вот небольшое саммари, плюс немного от себя.

1️⃣ Самое очевидное - дропнуть дурнопахнущие статики. Ну или стараться по-максимуму уменьшать их количество. Человечество давно осознало, что глобальные переменные - зло, а со злом нужно бороться и побеждать его. Используйте ООП, группируйте данные вместе. И не ленитесь передавать объекты в функции. И это поможет вам избавиться о большинства глобальных переменных. Способ, я бы сказал, идеальный. Но наш мир таковым не является и в реальном коде будут продолжать жить статики и надо уметь с ними правильно обходиться.

2️⃣ Делайте свои глобальные объекты constexpr. Глобальные изменяемые объекты - зло. Но вот умные константы, для которых можно проводить вычисления на этапе компиляции - тема богоугодная. Константны в коде так или иначе нужны, а в современных стандартах много уделяется внимания вычислениям на этапе компиляции и не зря. Вряд ли вам на этапе инициализации программы нужно делать что-то суперсложное, зависящее от внешнего мира. Зачастую, много чего можно вычислить в compile-time и не заботиться об опасностях динамической инициализации. К тому же их инициализация безопасна и предсказуема.

3️⃣ Иметь один хэдэр со всеми глобальными переменными и определить их все в одной единице трансляции. В пределах единицы трансляции порядок полностью определен, поэтому никаких проблем не будет. Однако есть один момент, что это решение будет сильно связывать друг с другом несвязанный по смыслу код. Держать все переменные в одном месте может показаться удобным на первый взгляд. Это еще сильнее развязывает руки разработчикам в плане увеличения количества связей между переменными. И в будущем распутывать эти связи будет еще сложнее. Single responsibility ушел в закат...
Да и банально разрабатывать сложнее. Удобно, когда код разбит на модули и каждый модуль максимально изолирован от остальных, чтобы не провоцировать мерж конфликты. А в этот суперфайл будут лезть буквально все и будут постоянные пересечения в изменениях разных разработчиков. Плюс можно так замержиться, что можно сломать логику работы глобальных переменных и все сильно пойдет по одному месту, потому что тесты хрен напишешь на них, а отлавливать баги в глобальных переменных - очень сложно.
Способ хоть и рабочий и много где используется, но далеко не идеальный.

4️⃣ Construct on first use idiom. Помните, как мы говорили про то, что статические локальные переменные функций инициализируются при первом вызове функции? Так вот эту особенность можно использовать, чтобы никогда не использовать объект в неинициализированном виде. Если у вас есть переменная А, инициализация которой зависит от переменной В, то есть вероятность, что В еще не инициализирована. Тогда можно переменную В обернуть в глобальную функцию-геттер, в которой эта переменная будет хранится в виде статическом локальной переменной и ее значение будет возвращаться наружу. Таким образом любое использование переменной будет проходить через вызов этой функции и нам гарантируется, что переменная создастся в момент первого вызова функции. Техника заслуживает отдельный пост, который выйдет чуть позже.

Solve your problems. Stay cool.

#cppcore
Empty base optimization

В этом посте мы рассказали, о том, сколько весит объект пустого класса. Настоятельно рекомендую вернуться к этому посту, чтобы быть в контексте.

Теперь возникает вопрос: что будет, если мы отнаследуемся от пустого класса? Каким образом будет учитываться этот один байт в наследнике и где он будет расположен?

Вообще говоря, ненулевой размер объекта пустого класса нужен просто для нормальной его адресации. Никакой полезной нагрузки он не несет и нужен, чтобы "просто работало". Однако, когда мы наследуется от такого класса, и, например, размещаем в наследнике какие-то поля, то наследник уже не нуждается в фейковом байте, чтобы нормально работать. У него это и так получится прекрасно. Получается, что этот 1 байт будет, как жабры на теле млекопитающего: предкам были нужны, а сейчас вообще ни к селу, ни к пгт.

Поэтому есть такое понятие, как empty base class optimization. Если мы наследуемся от пустого класса, то размер класса наследника будет ровно таким же, как как будто бы он ни от чего не наследовался.

Пример:

struct EmptyClass {
void MethodMeantJustNotToLeaveClassDeadInside() {}
};

struct Derived : public EmptyClass {
int a;
char b;
double c;
};

struct SizeReference {
int a;
char b;
double c;
};

int main() {
EmptyClass a;
Derived b;
SizeReference c;
std::cout << "EmptyClass object size: " << sizeof(a) << std::endl;
std::cout << "Derived object size: " << sizeof(b) << std::endl;
std::cout << "SizeReference object size: " << sizeof(c) << std::endl;
}


Вывод консоли:

EmptyClass object size: 1
Derived object size: 16
SizeReference object size: 16


Вроде бы очень логичная штука и даже почти интуитивная штука, но немногие знают в ее в профиль и анфас, поэтому сегодня исправили этот момент)

Optimize your life. Stay cool.

#cppcore #optimization
Идентификатор final для виртуальных методов
#новичкам

Продолжаем серию постов! Ранее мы уже упоминали идентификатор со специальным значением final в рамках наследования классов — запрещали создавать наследников того или иного класса. Это поведение распространялось на весь класс целиком, в том числе и на все его методы. Это может быть слишком строгим ограничением в какой-то ветке нашего подсемейства. Например, мы хотим его продолжать развивать, но точечно зафиксировать поведение одного конкретного переопределенного метода.

Запретить переопределение метода в наследниках можно с помощью идентификатора final (С++ 11 и выше):
struct Child : public Parent
{
void method_name() override final;
};

Ограничивать переопределения виртуальных методов может показаться неочевидным действием. Казалось бы, вот к чему это? Этот вопрос стоит рассматривать с технической и смысловой точки зрения. Начнем с последнего.

Код, который вы пишите, может быть достаточно глубоко осмыслен и выразителен. В частности, в семействе вашего класса можно выделить подсемейство со специфичным и фиксированным поведением.

В качестве примера, давайте рассмотрим семейство датчиков умного дома. Пусть была разработана открытая библиотека, которая предоставляет некоторый набор интерфейсов для разных типов датчиков. Например, для подсемейства пожарных датчиков. Производители устройств могут наследовать специальный интерфейс и реализовать прошивку для своего девайса. Как у них работает этот сенсор — никто не знает, но главное, что в случае срабатывания такого датчика происходит важное, в рамках этого подсемейства, действие - вызывается бригада пожарных. Это достаточно важный смысл, который может быть заложен в наследника класса и ограничен в переопределении для производителя:
// Датчик возгорания
struct IFireSensor : public ISensor
{
// В случае срабатывания, вызываем пожарных
void onAlarm(control_panel_t *ctrl) override final
{
ctrl->call_fireman();
}
};

Думаю, обосновывать важность этого ограничения не стоит. Если производитель по каким-то причинам захочет вызвать бригаду стриптизёров вместо пожарных, то до жаркой вечеринки дело не дойдёт!

Конечно, можно написать комментарии к коду, в надежде, что их прочитают... Но вот практика показывает, что их периодически игнорируют. Если какое-то ограничение не срабатывает во время компиляции и доходит до ревью, то разработка затягивается. Пока это увидят, пока переделают... Да и вообще, это сработает, только если у проверяющего достаточно компетенций / внимательности.

Кстати, хоть final и может быть применён только к виртуальному методу, мы не можем с помощью него проверить действительно ли мы переопределяем метод. Идентификатор final может быть применён к новому объявленному методу, а override нельзя. Следовательно, мы можем добиться такой ситуации: живой пример.

С помощью идентификатора final можно расширить список гарантий, которые предоставляет выделенная ветка семейства классов. Это может оказаться полезным не только для разработчиков, но и для компилятора. Так можно выполнить некоторые оптимизации, ускоряющие работу вашей программы. Поговорим об этом в следующих постах.

#cppcore #cpp11
Construct on first use idiom

Давайте здесь по-подробнее остановимся. Вещь важная. Предыдущий пост. #опытным

Название говорящее и говорит оно нам, что объект будет конструироваться при первом использовании, а не когда-то заранее. То есть это ленивые вычисления.

Суть в том, чтобы создавать объект только в тот момент, когда он нам понадобиться. Так мы можем четко контролировать момент его инициализации. Делается это с помощью статических локальных переменных.

Мы помним, что они инициализируются при первом вызове функции и существуют они до смерти всей программы. Таким образом, если мы из функции будем возвращать ссылку на эту переменную, то есть сделаем такой геттер, то мы функционально будем иметь глобальную переменную, для которой мы контролируем начало ее жизни.

Вернемся к примеру и посмотрим, как это выглядит. Было так:

// source.cpp
int quad(int n) {
return n * n;
}

auto staticA = quad(5);

// main.cpp
#include <iostream>

extern int staticA;
auto staticB = staticA;

int main() {
std::cout << "staticB: " << staticB << std::endl;
}



а теперь стало так:
// source.cpp
int quad(int n) {
return n * n;
}

int& GetStaticA() {
static int staticA = quad(5);
return staticA;

}

// main.cpp
#include <iostream>

int& GetStaticA();
static auto staticB = GetStaticA();
// just omit main


Переменная staticB зависит от значения staticA и это может вызвать проблемы, если инициализации staticB произойдет первой.

Теперь следите за руками: мы берем и оборачивает переменную, задающую значение, в функцию-геттер, которая просто выдает наружу значение этой переменной. Но инициализироваться staticA будет ровно в момент первого вызова функции GetStaticA. Таким образом, мы форсим рантайм инициализировать staticA первым при любых обстоятельствах.

Теперь результат компиляции не зависит от порядка файлов, которые передаются на вход. Что так g++ main.cpp source.cpp, что так g++ source.cpp main.cpp, результат будет staticB: 25.

Если у класса есть статическое поле и создание класса зависит от этого статического поля, то попробуйте перенести это поле внутрь статической функции(пример из этого поста):

using Map = std::map<std::string, std::unique_ptr<InitializationTest>>;
class InitializationTest {
public:
static Map& GetMap() {
static Map map;
return map;
}
static bool Create(std::string ID) {
GetMap().insert({ID, std::move(std::unique_ptr<InitializationTest>{new InitializationTest})});
return true;
}

private:
static Map map;
Test() = default;
};

static bool creation_result = InitializationTest::Create("qwe");

int main() {}


Теперь во всех местах использования бывшего статического поля, мы вызывает статический метод. Таким образом наша мапа создается ровно по первому нашему хотению и создавать статический объект класса InitializationTest теперь абсолютно безопасно.

Если у вас есть 2 статических объекта пользовательского типа и инициализация одного из них предполагает использование другого, то можно сделать так(пример нагло украден у подписчика Бобра из этого коммента)

// singleton.h
class Singleton {
public:
static Singleton& instance() {
static Singleton inst{};
return inst;
}
int makeSomethingUsefull(){}
private:
Singleton() = default;
};

//another_singleton.h
#include "singleton.h"

class AnotherSingleton {
public:
static AnotherSingleton& instance() {;
static AnotherSingleton inst{Singleton::instance().makeSomethingUsefull()};
return inst;
}
private:
AnotherSingleton(int param) : data{param} {};
int data;
};


В этом примере создание объекта класса AnotherSingleton зависит от объекта Singleton. Поэтому мы запрещаем плебесам создавать объекты класса Singleton, а создаем его один раз в статической функции геттера инстанса объекта и дальше везде используем только этот инстанс.

Заключение в комментах

Solve your problems. Stay cool.

#cppcore #goodpractice #design
Как работает динамический полиморфизм?
#новичкам

Продолжаем серию постов! В предыдущих статьях мы немного познакомились с возможностями полиморфных классов. Давайте подумаем, как же эта штука работает? По возможности, на собеседованиях интересуются этим вопросом 😉

Наверняка у вас так или иначе пробегал вопрос в голове: как же во время выполнения программы получается выбрать нужную реализацию метода, обращаясь к указателю лишь базового класса?
struct Base
{
virtual void vmethod_1();
virtual void vmethod_2();
};

struct Derived : public Base
{
void vmethod_2() override;
};

Base *data = new Derived();

// Calls Derived::vmethod_2()
data->vmethod_2();


Это подталкивает к мысли, что объект полиморфного класса хранит какой-то секретик и владеет информацией о том, какие реализации методов надо вызывать.

Объекты полиморфных классов отличаются тем, что содержат в себе скрытый указатель на дополнительный участок памяти. В частности, размер объекта полиморфного класса немного больше:
sizeof(Base) // returns 8


Несмотря на то, что в Base нет никаких полей, в данном случае размер не будет равен одному байту. Класс Base формально пуст, но как раз под этот скрытый указатель резервируется доп. память: живой пример. На платформе x86-64 размер указателя равен 8 байт.

Данный скрытый указатель ведет в статическую область памяти, где лежит таблица виртуальных методов. Эта таблица представляет собой массив указателей на методы полиморфных наследников, в том числе и переопределенные. В общем случае, компилятор генерирует такие инструкции, которые будут разыменовывать эти указатели и совершать вызов нужной реализации. Это называется косвенным вызовом, indirect call.

Независимо от типа указателя на объект полиморфного класса, его скрытый указатель будет смотреть именно на ту таблицу, которая ассоциирована с конструированным классом:
// Скрытый указатель объекта
// смотрит на vtable класса Base
Base *data = new Base();

// Скрытый указатель объекта
// смотрит на vtable класса Derived
Base *data = new Derived();


Таким образом, и получается отвязать тип указателя от набора методов, которые должны быть вызваны.

Таблицы виртуальных методов генерируются на каждый полиморфный класс (не объект!), чтобы учесть все переопределения методов. Компилятор анализирует объявленные виртуальные методы и пронумеровывает их, а затем в этом порядке размещает в таблице. Например, для базового класса она будет выглядеть так:
|    vtable of Base   |
|---------------------|
| &Base::vmethod_1 |
|---------------------|
| &Base::vmethod_2 |


А для наследованного класса уже вот так:
|  vtable of Derived  |
|---------------------|
| &Base::vmethod_1 |
|---------------------|
| &Derived::vmethod_2 |


В конкретно взятых табличках всего две ячейки, которые хранят адрес на свою реализацию виртуального метода. В момент вызова, нам будет известен порядковый номер виртуального метода, а значит и его ячейку в таблице.

В общем случае, без каких либо оптимизаций, вызов виртуального метода состоит из следующих шагов:
1. Прочитать скрытый виртуальный указатель на таблицу
2. Сместить значение загруженного указателя до записи в таблице с адресом вызываемого метода
3. Прочитать адрес метода
4. Выполнить косвенный вызов по прочитанному адресу

Давайте мысленно препарируем участок вызывающего кода:
void virtual_call(Base *object)
{
// 1. Разыменовываем указатель `data` на класс `Base`
// 2. Читаем указатель на vtable
// 3. Смещаемся на величину 1 указателя
// 4. Читаем указатель на `vmethod_2`
// 5. Вызываем данный метод
// 6. Ого! Оказывается, это была переопределение Derived::vmethod_2
object->vmethod_2();
}


Думаю, что по моим комментариям к коду, а именно п. 6, видно, что даже сама программа не знает, что именно она вызывает, пока этого не сделает. Именно поэтому эта механика называется динамический полиморфизм.

Продолжение в комментариях 👇

#howitworks #cppcore
Проблема Construct on first use idiom
#опытным

Прошлый пост показывает решение проблемы static initialization order fiasco. Однако даже этот прием имеет свои проблемы.

Дело в том, что мы сильно фокусировались на инициализации объекта и решали проблемы с ней. Но как насчет разрушения объекта? Мы подумали об этом? Not really.

Давайте возьмем классы, которые могут быть использованы для создания и статических объектов и любых других.

// ClassA.h
class ClassA {
public:
int makeSomethingUsefull(){}
~ClassA() { another_global.use_it();}
};

static ClassA& GetStaticClassA() {
static ClassA inst{};
return inst;
}

//another_singleton.h
#include "singleton.h"

class ClassB {
public:
ClassB(int param) : data{param} {};
~ClassB() { another_global.use_it();}
private:
int data;
};

static ClassB& GetStaticClassB() {;
static ClassB inst{GetStaticClassA().makeSomethingUsefull()};
return inst;
}


У нас все также 2 класса, но они уже не синглтоны, а могут создаваться в какой угодно области. Нам нужны статические объекты этих классов. И мы, как умные дяди, оградили себя от проблемы инициализации статиков, используя construct on first use idiom. Однако замечу, что в деструкторах наших классов они используют глобальную переменную another_global. И например, для объектов с автоматическим временем жизни это вообще не проблема, они свободно создаются и разрушаются.

Но что же будет, если так получится, что another_global удалится раньше, чем статические объекты наших классов? Правильно. Static deinitialization order fiasco. Обращение к уже разрушенному объекту - такое же UB, как и обращение к еще не инициализированному.

Кому-то очень сильно сейчас может свести багскулы, потому что логирование в деструкторах объектов, которые могут быть статиками - очень частая вещь, а соотвественно и потенциальная проблема. Подписчики могут подтвердить это в комментах.

Я сознательно тут в пример не ставлю синглтоны, потому что для них еще как-то можно осознать потенциальную проблему самостоятельно: объект один, мы четко понимаем, как он себя ведет, и можем подумать о его разрушении. Но в сегодняшнем примере при создании подобных классов обычно сильно не задумываются, что объект могут создать в статической области, а значит и о статической деинициализации не думают. Такая невнимательность может привести к трудноотловимым багам.

И это проблема не идиомы в целом, а подхода к созданию объекта. Есть и другой способ это делать:

// ClassA.h

// Here Class A definition

static ClassA& GetStaticClassA() {
static ClassA* inst = new ClassA{};
return *inst;
}

//another_singleton.h
#include "singleton.h"

// Here ClassB definition

static ClassB& GetStaticClassB() {;
static ClassB* inst = new ClassB{GetStaticClassA().makeSomethingUsefull()};
return *inst;
}


Обратите внимание на магию. Мы внутри статических функций определяем не статические объекты, а статические указатели, к которым при первом вызове прикрепляем динамически созданные объекты. Вроде ничего кардинально не поменялось, но это на первый взгляд.

Мы никогда не вызываем delete. В конце программы разрушится только указатель, но не объект, на который он указывает. Обычно такая ситуация называется data leak, но в этом случае "вы не понимаете, это другое". Потому что при завершении программы ОС сама освобождает всю память, которая была занята программой и на самом деле ничего не утекает. Утечка памяти - это постоянное увеличение использования памяти программы со временем ее жизни. А тут мы один раз захватили эту память(и только эту!), но просто не отдали. Потребление памяти в течение программы не увеличивается. Как говорится: "Это норма!".

Этот вариант конечно не подойдет для тех случаев, если вам прям обязательно как-то сигнализировать о разрушении всех-превсех объектов этого класса и без этого никуда. Но он совершенно точно избавит вас от потенциальных проблем деинициализации(ее просто не будет хехе), если вам не важен деструктор статических объектов.

See drawbacks of your solutions. Stay cool.

#goodpractice #design #cppcore
Как работает dynamic_cast? RTTI!
#опытным #fun

Продолжаем серию! В прошлой статье мы познакомились с таблицей виртуальных методов. Помимо этой таблицы, в этой же области памяти скрывается еще одна структура.

Как мы видели ранее, для полиморфных объектов существует специальный оператор dynamic_cast. Стандарт не регламентирует его реализацию, но чаще всего, для работы требуется дополнительная информация о типе полиморфного объекта RTTI (Run Time Type Information). Посмотреть эту структуру можно с помощью оператора typeid:
cpp
const auto &RTTI = typeid(object);

Обратите внимание, typeid возвращает read-only ссылку на объект std::type_info, т.к. эту область памяти нельзя изменять — она была сгенерирована компилятором на этапе компиляции.

Содержимое RTTI зависит от компилятора, но как минимум там хранится hash полиморфного класса и его имя, которые доступны из std::type_info. Маловероятно, что вам на этом потребуется построить какую-то логику приложения, но эта штука могла бы быть вам полезна при отладке / подсчёте статистики и т.д.

Операторы dynamic_cast и typeid получают доступ к этой структуре так же через скрытый виртуальный указатель, который подшивается к объектам полиморфного класса. Как мы знаем, этот указатель смотрит на начало таблицы виртуальных методов, коих может быть бесчисленное множество и варьироваться от наследника к наследнику.

Как же нам найти начало объекта RTTI? Не боги горшки обжигают, есть просто специальный указатель, который расположен прямо перед началом таблицы виртуальных методов. Он и ведёт к объекту RTTI:
┌-─|   ptr to RTTI  |   vtable pointer
| |----------------| <- looks here
| | vtable methods |
| |----------------|
└─>| RTTI object |


Получив доступ к дополнительной информации остаётся выполнить приведение типа: upcast, downcast, sidecast/crosscast. Эта задача требует совершить поиск в ориентированном ациклическом графе (DAG, directed acyclic graph), что в рамках этой операции может быть трудоёмким, но необходимым для обработки общего случая. Теперь мы можем даже ответить, почему dynamic_cast такой медленный.

Можем ли мы как-то ускорить работу? Мы можем просто запретить использовать dynamic_cast 😄 Это можно сделать, отключив RTTI с помощью флага компиляции:
-fno-rtti

И такое ограничение будет автоматически подталкивать к пересмотру полученной архитектуры решения или разработке собственного механизма приведения типов.

На счет последнего надо много и долго думать. На стыке двух динамических библиотек, которые могут ничего не знать друг о друге, придется как-то проверять, что лежит в динамическом типе. Так же необходимо учитывать особенности множественного и виртуального наследования. От них можно и в принципе отказаться, но как запретить вышеупомянутые виды наследования в коде? Меня бы в первую очередь интересовала автономная и независимая жизнь проекта без пристального надзора хранителей знаний. Это задача, которая имеет много подводных камней или требует введения в проект ограничений, дополнительного контроля.

Если dynamic_cast становится бутылочным горлышком, то в первую очередь стоит пересмотреть именно архитектуру решения, а оптимизации оставить на крайний случай.

#cppcore #howitworks
Еще одна проблема при разрушении статиков
#опытным

Идею для поста подкинул Михаил в этом комменте

Суть в чем. Все глобальные переменные, не помеченные thread_local, создаются и уничтожаются в главном потоке, в котором выполняется main(). Но использовать мы их можем и в других потоках, адресное пространство-то одно. И вот здесь скрывается опасность: мы можем использовать в другом потоке глобальную переменную, которая уже была уничтожена!

Вы просите объяснений? Их есть у меня.

Для начала нужно понять, при каких условиях мы можем получить ситуацию, при которой статическая переменная уже удалилась, программа еще не завершилась, а другой тред продолжает использовать переменную.

По пунктам

1️⃣ Статические переменные удаляются при вызове std::exit, что происходит после завершения main(). Значит, нам нужно выйти из main'а.

2️⃣ Получается, что второй поток должен продолжать выполняться даже после завершения main. Тут только один вариант: отделить тред от его объекта, чтобы его не нужно было джойнить. Делается это с помощью метода detach().

3️⃣ Использование переменной вторым потоком должно быть между разрушением глобальной переменной и завершением std::exit, потому что эта функция завершает процесс. И естественно, что после завершения процесса уже никакие потоки выполняться не могут.

Вот такие незамысловатые условия. Давайте посмотрим на примере.


struct A {
~A() {
std::this_thread::sleep_for(std::chrono::seconds(5));
}
};

struct B {
std::string str = "Use me";
~B() {
std::cout << "B dtor" << std::endl;;
}
};

A global_for_waiting_inside_globals_dectruction;
B violated_global;

void Func() {
for (int i = 0; i < 20; ++i) {
std::cout << violated_global.str << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}

int main() {
std::thread th{Func};
th.detach();
std::this_thread::sleep_for(std::chrono::seconds(3)); // aka some usefull work
}


Быстренькое пояснение. Создал 2 простеньких класса, которые позволят наглядно показать процесс удаления переменной и использования ее после удаления. Деструктор первого класса заставляет главный тред уснуть на 5 секунд, что помещает программу в опасное состояние как раз между ее завершением и разрушением статиков. Второй класс мы как раз и будем использовать для создания шаренного объекта, который использует второй тред. У него в деструкторе выводится сообщение-индикатор удаления. Давайте посмотрим на вывод:

Use me
Use me
Use me
B dtor
Use me
Use me
Use me
Use me
Use me


Поймана за хвост, паршивка! Мы используем поле удаленного объекта, что чистой воды UB!

Собсна, это еще одна причина отказываться от статических объектов в пользу инкапсуляции их в классы и прокидывания явным образом во все нужные места. Потому что даже такая базовая вещь, как логгер, может сильно подпортить жизнь.

Если я что-то упустил, то пусть Михаил меня поправит в комментах.

Avoid dangerous practices. Stay cool.

#cppcore #cpp11 #concurrency
Девиртуализация вызовов. Ч2
#опытным

В предыдущем посте мы столкнулись с невозможностью девиртуализировать функцию bar, т.к. мы не могли гарантировать отсутствие вызовов из других единиц трансляции.

Получается, что нам достаточно ограничить внешнее связывание? Рассмотрим в примерах дальше 😊

Запрет на внешнее связывание 1
Итак, мы ведь знаем, что для конкретной функции можно запретить внешнее связывание, например, с помощью static. Из живого примера:
// direct call!
static void bar(Base &da, Base &db)
{
// push  rbx
// mov rax, [rdi]
// mov   rbx, rsi
da.vmethod(); // call DerivedA::vmethod()
// mov   rdi, rbx
// pop   rbx
db.vmethod(); // jmp   DerivedB::vmethod()
}

Вызов функции bar - единственный в данной единице трансляции, с конкретными наследниками Base. Следовательно, мы можем доказать П.2, П.4, П.3 (терминология из первой части).

Кстати, П.2 может быть доказан лишь частично! Например, bar можно вызывать с разными аргументами, тогда оптимизация будет совершена лишь частично:
// indirect + direct call
static void bar(Base &da, Base &db)
{
// push  rbx
// mov rax, [rdi]
// mov   rbx, rsi
da.vmethod(); // call  [[rax]]
// mov   rdi, rbx
// pop   rbx
db.vmethod(); // jmp   DerivedB::vmethod()
}

В данном случае, с учетом всех наборов аргументов при вызове foo, только второй vmethod может быть оптимизирован.

Запрет на внешнее связывание 2
В предыдущих способах можно заметить, что сложности возникают с доказательством П.2 и П.4. Компилятор опасается, что в других единицах трансляции появятся либо новые перегрузки, либо будут вызваны функции с объектами других наследников полиморфных классов.

Учитывая особенности сборки проекта, разработчик может намеренно сообщить компилятору, что других единиц трансляции не будет. В частности, для LLVM Clang можно применить следующие опции:
-flto -fwhole-program-vtables -fvisibility=hidden

В GCC можно вообще указать, что компилируемая единица и есть вся программа с помощью флага:
-fwhole-program

Он буквально разрешает считать, что компилятор знает ВСЕ известные перегрузки и их вызовы. Короче, отметит все функции ключевым словом static: живой пример.

Запрет на внешнее связывание 3
Еще один способ показать компилятору, что новых полиморфных перегрузок не появится. Можно использовать unnamed namespace:
namespace
{
struct Base
{
virtual void vmethod();
};

struct Derived : public Base
{
void vmethod() override;
};
}

Теперь данное семейство полиморфных классов будет скрыто от других единиц трансляции, что доказывает компилятору П.3 и П.4, а так же П.2 по месту требования.

Вот такими несложными действиями можно сократить количество обращений к таблице виртуальных методов и ускорить выполнение вашего приложения 😉

#cppcore #hardcore #howitworks
C-style cast
#новичкам

Как уже неоднократно было нами отмечено, что язык C++ разрабатывался с поддержкой обратной совместимости языка C. В частности, в C++ поддерживается приведение в стиле C:
int value = (int)arg;

Это достаточно короткий и, на первый взгляд, интуитивно понятный оператор, за что его необоснованно любят использовать в C++.

Вот давайте вспомним все операторы приведения, про которые мы успели рассказать? У нас были посты про:
- static_cast
- reinterpret_cast
- const_cast
- dynamic_cast

У каждого из них есть своя область применения и соответствующий алгоритм приведения, а так же наборы проверок! Т.к. C-style cast сочетает в себе все вышеперечисленные операторы, то большая часть проверок просто отсутствует... Они не проверяют конкретный случай, что является очень опасным моментом.

В случае невозможности желаемого приведения, C-style cast совершит другое подходящее. Рассмотрим ошибку из живого примера:
cpp
using PPrintableValue = PrintableValue *;
...
auto data = (PPrintableValue)value;

Мы хотели привести value к типу PrintableValue (int64_t -> int32_t). Но в результате неудачного нейминга псевдонима мы ошиблись. Вдруг клавиша P залипла просто? Вдруг рефакторинг неудачно прошел? В итоге мы собрали программу, смогли её запустить и привели int64_t к int32_t*, а дальше его попытались разыменовать. На первый взгляд, ошибка непонятна: мы ожидали static_cast, а получили reinterpret_cast. В больших продуктах такие ошибки могут оставаться незамеченными, пока не будет проведено полное тестирование продукта (вами или клиентом).

Давайте вспомним про приведение между ветками ромбовидного наследования из статьи про dynamic_cast. Использование C-style приведения бездумно выполнит то, что от него попросили и вляпается в ошибку, хоть красненьким и не подчеркивается :) На самом деле он выполнит reinterpret_cast, но это логическая ошибка! Нам очевидно, что этот оператор не подходит по смыслу, но может подойти static_cast. Если мы попробуем это сделать, будет ошибка компиляции:
error: invalid 'static_cast' from type 'Mother*' to type 'Father*':
Father *switched_son_of_father = static_cast<Father*>(son_of_mother);

Опустим тему с const_cast, думаю, тут и так все понятно.

И вот ладно, дело во внимательности и понимании предназначения операторов... C-style cast позволяет выполнить приведение к приватным предкам класса: живой пример. Вот от вас намеренно хотели скрыть возможность вмешательства в поведение предка, а вы это ограничение обошли и даже не заметили подвоха. Увидеть это на ревью так же сложно! Это ведет к очень забагованному поведению программы.

Оператор C-style cast скрывает в себе достаточно неочевидное поведение в некоторых ситуациях. Его сложно заметить, его сложно отлаживать. Возможно, что будет проще отказаться от него вовсе, чем помнить о всех подводных камнях. Предупреждения вам в помощь! Добавляйте опцию компилятора:
-Wold-style-cast

#cppcore #goodpractice
Double-Checked Locking Pattern. Мотивация
#новичкам

Михаил на ретро предложил идею посмотреть в прошлое на определенную проблему и понять, как изменялись подходы к решению проблемы. Тут не прям сильно далеко пойдем и сильно много итераций будем рассматривать, но все же. Также были запросы на многопоточку и паттерны плюсовые. Собсна, все это комбинируя с большой темой статиков, начинаем изучать паттерн Блокировки с двойной проверкой.

Начнем с того, что в стародавние времена до С++11 у нас была довольно примитивная модель памяти, которая вообще не знала о существовании потоков. И не было вот этой гарантии для статических локальных переменных:

...
If control enters the declaration concurrently
while the variable is being initialized,
the concurrent execution shall wait for
completion of the initialization.


Поэтому раньше люди не могли писать такой простой код:

Singleton& GetInstance() {
static Singleton inst{};
return inst;
}


и надеяться на то, что объект будет создаваться потокобезопасно.

Самое простое, что можно здесь придумать - влепить замок и не париться.

class Singleton {
public:
static Singleton* instance() {
Lock lock;
if (inst_ptr == NULL) {
inst_ptr = new Singleton;
}
return inst_ptr;
}
private:
Singleton() = default;
static Singleton* inst_ptr;
};


У нас есть какая-то своя RAII обертка Lock над каким-то мьютексом(до С++11 ни std::mutex, ни std::lock_guard не существовало, приходилось велосипедить(ну или бустовать, кому как удобнее)).

Обратите внимание, как это работает. Статические указатели автоматически zero-инициализируются нулем, поэтому в начале inst_ptr равен NULL. Дальше нужно проверить, если указатель еще нулевой, то значит мы ничего не проинициализировали и нужно создать объект. И делать это должен один тред. Но куда поставить лок? На весь скоуп или только внутри условия на создание объекта?

Дело в том, что может получиться так, что несколько потоков одновременно войдут в условие. Но только один из них успешно возьмет лок. Создаст объект и отпустит мьютекс. Но другие потоки-то уже вошли в условие. И когда настанет их черед выполняться, то они просто будут пересоздавать объекты и мы получим бог знает какие сайдэффекты. Плюс утечку памяти, так как изначально созданные объект потеряется навсегда. Плюс получается, что наш синглтон не такой уж и сингл...

Именно поэтому замок должен стоять с самого начала, чтобы только один поток вошел в условие. И создал объект. А все остальные потоки будут просто пользоваться этим объектом, обходя условие.

Однако теперь возникает проблема. Нам, вообще говоря, этот замок нахрен не сдался после того, как мы создали объект. Захват и освобождение мьютекса - довольно затратные операции и не хотелось бы их каждый раз выполнять, когда мы просто хотим получить доступ к нашему объекту-одиночке. И было бы очень удобно перенести этот лок в условие. Но в текущей реализации это невозможно...

Здесь-то и приходит на помощь шаблон блокировки с двойной проверкой, о котором подробнее поговорим в следующих статьях.

Solve your problems. Stay cool.

#multitasking #cppcore #cpp11
Double-Checked Locking Pattern Classic
#опытным

Ядро идеи этого паттерна - тот факт, что решение из предыдущего поста неоптимально. Нам на самом деле нужно всего один раз взять замок для того, чтобы создать объект и потом не возвращаться к этом шагу. Если кто-то увидит, что наш указатель - ненулевой, то он даже не будет пытаться что-то делать и сразу вернется из функции.

Поэтому в паттерне блокировки с двойной проверкой, нулёвость указателя проверяется перед локом. Таким образом мы откидываем просадку производительности для подавляющего большинства вызова геттера синглтона. Однако у нас теперь остается узкое место - момент инициализации. И вот где появляется вторая проверка(всю обертку уже не буду писать для краткости).

static Singleton* Singleton::instance() {
if (inst_ptr == NULL) {
Lock lock;
if (inst_ptr == NULL) {
inst_ptr = new Singleton;
}
}
return inst_ptr;
}


Таким образом, даже если 2 потока войдут в первое условие и первый из них проинициализирует указатель, то второй поток будет вынужден проверить еще раз, можно ли ему создать объект. И грустный вернется из геттера, потому что ему нельзя.

Это классическая реализация, многие подписчики, думаю, видели ее. Однако от того, что она классическая, не следует, что она корректная.

Давайте посмотрим на вот эту строчку поближе:

inst_ptr = new Singleton;


Что здесь происходит? На самом деле происходят 3 шага:

1️⃣ Аллокация памяти под объект.

2️⃣ Вызов его конструктора на аллоцированной памяти.

3️⃣ Присваивание inst_ptr'у нового значения.

И вот мы, как наивные чукотские мальчики, думаем, что все эти 3 шага происходят в этом конкретном порядке. А вот фигушки! Компилятор, мать его ети. Иногда он может просто взять и переставить шаги 2 и 3 местами! И вот к чему это может привести.

Давайте посмотрим эквивалентный плюсовый код, когда компилятор переставил шаги:

static Singleton* Singleton::instance() {
if (inst_ptr == NULL) {
Lock lock;
if (inst_ptr == NULL) {
inst_ptr = // step 3
operator new(sizeof(Singleton)); // step 1
new(inst_ptr) Singleton; // step 2
}
}
return inst_ptr;
}


Че здесь происходит. Здесь просто явно показаны шаги. С помощью operator new мы выделяем память(1 шаг), дальше присваиваем указатель на эту память inst_ptr'у(шаг 3). И в конце конструируем объект. И напомню, это не программист так пишет. Это эквивалентный код тому, что может сгенерировать компилятор.

И этот код совсем не эквивалентен тому, что было изначально. Потому что конструктор Singleton может кинуть исключение и очень важно, чтобы есть он это сделает, то inst_ptr останется нетронутым. А он как бы изменяется. Поэтому, в большинстве случаев, компилятору нельзя генерировать такой код. Но при определенных условиях, он может это сделать. Например, если докажет сам себе, что конструктор не может кинуть исключение. И вот тогда происходит magic.

Тред №1 входит в первое условие, берет лок и выполняет шаги 1 и 3 и потом засыпает по воле планировщика. И мы имеем состояние, когда указатель проинициализирован, а объекта на этой памяти еще нет(шаг 2 не выполнен).

Тред №2 входит в функцию, видит, что указатель ненулевой и возвращает его наружу. А внешний код потом берет и разыименовывает указатель с непроинициализированной памятью. Уупс. UB.

Что можно сделать? Вообще говоря, ничего. Если сам язык не подразумевает многопоточности, то компилятор даже не думает о таких штуках и с его точки зрения все валидно. Даже volatile предотвращает реордеринг инструкций в рамках только одного потока. Но мы же в многоядерной среде и там существуют совершенно другие эффекты, о которых "безпоточные" С и С++ в душе не знают. Напоминаю, что мы до сих пор в эре до С++11. Завтра чуть ближе посмотрим на конкретные проблемы, при которых мы сталкиваемся, находясь в многопоточном окружении.

Criticize your solutions. Stay cool.

#concurrency #cppcore #compiler #cpp11
Что опасного в многопоточке?
#новичкам

Монстры, морские чудовища, жуткие болезни... Все это снится разработчику, ломающему голову над проблемой в его многопоточном коде. Что же такого трудного для понимания и для отлавливания может произойти?

Одна из многих проблем - когерентность кэша. У нас есть много вычислительных юнитов. У каждого из них есть свой кэш. И все они шарят общее адресное пространство процесса. Кэши напрямую не связаны с другими вычислительными юнитами, только со своими(это про кэши низких уровней). В такой архитектуре нужно четко определить механизм, по которому изменения одного кэша станут видны другому ядру. Такие механизмы есть. Например, упрощенный вариант того, что сейчас есть - модель MESI. Непростая штука и мы пока не будем разбираться в деталях. Важно вот что: на процесс, охватывающий промежуток от изменения одной кэш линии до того, как эти изменения станут доступны другому ядру, тратится время. И это не атомарная операция! То есть нет такого, что при каждом изменении кэш линии информация об этом инциденте моментально доходит до других юнитов и они тут же первым приоритетом подгружают новое значение. Это очень неэффективно. Поэтому может случиться такая ситуация, при которой переменная в одном кэше процессора уже изменилась, а в другом кэше еще осталась ее старая копия, которая используется другим процессором. Это и есть одна из граней проблемы когерентности кэша.

Если с одной операцией-то тяжко, то еще более bizarre ситуация становится, когда мы начинаем рассматривать две связанных операции. Представим себе такую картину:

struct Class {
Class(int a, int b, int c) : x{a}, y{b}, z{c} {}
int x;
int y;
int z;
};

Class * shared;

void fun() {
shared = new Class{1, 2, 3};
}


Функция fun выполняется в каком-то потоке и и меняет значения переменной. Логично, что в начале выполняется создание объекта, а потом присвоение указателя. Но это актуально лишь для этого потока и так это видит соотвествующее ядро. Мы ведь в многопоточной среде, здесь убивают...
Может произойти так, что данные в другой процессор подтянутся в обратном порядке. То есть в начале появится инициализированный указатель, указывающий на какую-то память, а потом подтянется инфа об созданном на этой памяти объекте. Вот и получается, что этот другой поток может сделать проверку:

if (shared) 
// do smt with object

И код войдет в условие, потому что указатель ненулевой. Но память по этому указателю будет еще не инициализирована. А это, друзья, наше любимое UB.

И это в точности то, что может происходить с нашим беднягой синглтоном! Если вы думаете, что lock на мьютексе вас спасет, то нет, не спасет!

Да, лок подразумевает барьеры памяти и при unlock'e изменения флашатся. Но на незащищенном чтении-то они подтягиваются без барьеров! Это был небольшой спойлер для шарящих за барьеры. О них не сегодня.

Именно поэтому даже если мы все вместе обмажемся маслом и начнем бороться volatile и будем везде его пихать, то это все равно не поможет. Жонглирование указателями тоже. Тут проблема даже не в том, что компилятор как-то переставляет инструкции. Помимо всего прочего и сам процессор может менять местами инструкции для большей производительности. На такие штуки мы уже никак не влияем. Просто смиритесь с тем, что природа многопоточного мира такая и с этим надо уметь работать и решать такие проблемы.

Завтра как раз об этом и поговорим.

Be able to work in multitasking mode. Stay cool.

#concurrency #cppcore
Ассемблер инициализации статических локальных переменных
#опытным

Пример из предыдущего поста - рабочая версия паттерна. Однако, нам, вообще говоря, можно всего этого не писать. Ведь начиная с С++11 нам гарантируют тред-сэйф инициализацию статических локальных переменных и можно просто писать:

Singleton& Singleton::getInstance() {
static Singleton instance;
return instance;
}


Мы посмотрели, как вся защита может выглядеть на уровне С++ кода. Но в примере сверху никакой защиты на этом уровне нет. А это значит, что она лежит ниже, на уровне машинных инструкций. Которые мы можем с горем-пополам прочитать в виде ассемблера.

Сейчас будет очень страшно, но я попытался оставить самые важные куски и места и опустил неважное. Показываю ассемблер под x86-64, сгенерированный gcc.

Singleton::getInstance():
1 movzbl guard variable for Singleton::getInstance()::instance(%rip), %eax
2 testb %al, %al
3 je .L19
4 movl $Singleton::getInstance()::instance, %eax
5 ret
.L19:
...
6 call __cxa_guard_acquire
7 testl %eax, %eax
8 jne .L20
.L9:
9 movl $Singleton::getInstance()::instance, %eax
10 popq %rbx
11 ret
.L20:
12 movl $Singleton::getInstance()::instance, %esi
{Constructor}
13 movl $guard variable for Singleton::getInstance()::instance, %edi
14 call __cxa_guard_release
{safe instance and return}



Так как код оперирует объектом, а не указателем, то и в ассемблере это отражено. Но да не особо это важно. Сейчас все поймете. Для удобства обращения к коду, пометил строчки номерами.

Итак, мы входим в функцию. И тут же на первой строчке у нас появляется строжевая гвардия для переменной instance. Гвардия защищена барьером памяти и она показывает, инициализирована уже instance или нет. Так как мы без указателей, то вместо загрузки указателя и установки барьера памяти тут просто происходит загрузка гард-переменной для instance в регистр eax. Дальше на второй строчке мы проверяем, была ли инициализирована instance. al - это младший байт регистра eax. Соотвественно, если al - ноль, то инструкция testb выставляет zero-flag и в условном прыжке на 3-ей строчке мы прыгаем по метке. Если al - не ноль, то наш синглтон уже инициализирован и мы можем вернуть его из функции. Получается, что это наша первая проверка на ноль.

На метке .L19 мы берем лок с помощью вызова __cxa_guard_acquire, которая используется для залочивания мьютексов. И снова проверяем переменную-гард на пустоту(напоминаем себе, что она в eax загружена), если до сих пор она нулевая, то прыгаем в .L20. Если уже не ноль, то есть переменная инициализирована, то проваливаемся в .L9, где кладем созданную переменную в регистр возврата значения на 9-й строчке и выходим из функции(10 и 11). Это была вторая проверка

На метке .L20 мы на 12-й строчке кладем наш неинициализированный синглтон в регистр для последующей обработки, а именно для конструирования объекта. На 13-й строчке кладем адрес гарда в регистр, чтобы чуть позже записать туда ненулевое значение aka синглтон инициализирован. Далее мы отпускаем лок с помощью __cxa_guard_release, делаем все необходимые завершающие действия и выходим из функции.

Повторю, что тут много всего пропущено для краткости и наглядности, но вы уже сейчас можете сравнить этот ассемблер с плюсовым кодом из вчерашнего поста и сразу же заметите практически однозначное соответствие. Именно так и выглядит DCLP на ассемблере.

Стоит еще раз обратить внимание на то, что __cxa_guard_acquire и __cxa_guard_release - это не барьеры памяти! Это захват мьютекса. Барьеры памяти напрямую здесь не нужны. Нам важно только защитить гард-переменную для синглтона, потому что проверяется только она.

Для пытливых читателей оставлю ссылочку на годболт с примером, чтобы желающие могли поиграться.

Dig deeper. Stay cool.

#concurrency #cppcore
XOR Swap

Есть такая интересная техника для свопинга содержимого двух переменных без надобности во временной третьей! Стандартный подход выглядит примерно так:

template <class T>
void swap(T& lhs, T& rhs) {
T tmp = std::move(lhs);
lhs = std::move(rhs);
rhs = std::move(tmp);
}


Все мы с программистких пеленок уже выучили это. И примерно так и реализована функция std::swap из стандартной библиотеки. Однако вот вам задали на собесе вопрос: "вот у вас есть 2 числа, но я хочу, чтобы вы обменяли их значения без временной переменной?". Какие мысли? Подумайте пару секунд.

Как всегда, на помощь приходит магия математики и битовых операций. Можно использовать 3 подряд операции xor над этими числами и мы получим нужный результат.

template <class T, typename std::enable_if_t<std::is_integral_v<T>> = 0>
void swap(T& x, T& y) {
if (&x == &y)
return;
x = x ^ y;
y = x ^ y;
x = x ^ y;
}


Доказывать сие утверждения я, конечно, не буду. Однако можете почитать в английской вики, там все подробно выводится из свойств Исключающего ИЛИ.

Тут есть один интересный момент, что в случае подачи на вход функции одной и той же переменной, то произойдет эффект зануления. Первый же xor занулит x, а значит и y. Поэтому в самом начале стоит условие на проверку одинакового адреса.

При подаче на вход просто одинаковых значений, все работает и без условия.

Ну и работает это дело только с целочисленными параметрами.

Но предостерегаю вас - не используйте эту технику в современных программах! Результаты этих трех ксоров напрямую зависят друг от друга по цепочке. А значит параллелизма на уровне инструкций можно не ждать.

Современные компиляторы вполне могут и соптимизировать третью переменную и вы ее вовсе не увидите в ассемблере. Да и еще и вариант с доп переменной тупо быстрее работает. Всего 2 store'а и 2 load'а, которые еще и распараллелить можно, против 3 затратных ксоров. Да и даже довольно тяжеловесная XCHG работает быстрее, чем 3 xor'а.

Зачем я это все рассказываю тогда, если эта техника уже никому не уперлась? Для ретроспективы событий. Дело в том, что раньше люди писали программы без компиляторов, напрямую на ассемблере. Плюс в то время компьютеры имели такое маленькое количество памяти, что биться приходилось буквально за каждый байт. А используя операции xor, мы экономим 33% памяти на эту операцию. Довольно неплохо. В стародавние времена как только не извращались люди, чтобы выжимать все из железа. Эх, были времена...

Понимание тонкостей операции xor и ее возможных приложений делают ее довольно мощным инструментом в низкоуровневых вычислениях. А в некоторых задачах вы и вовсе никогда даже не подумаете, что они могут наиболее эффективным образом решаться с помощью xor.

Learn technics from the past. Stay cool.

#cppcore #fun #algorithms
Порядок вызовов конструкторов и деструкторов дочерних классов
#новичкам

Сегодня такой, довольно попсовый пост. Но, как говорится, это база и это нужно знать.

Вот есть у вас какая-то иерархия классов.

struct Base1 {
Base1() {std::cout << "Base1" << std::endl;}
~Base1() {std::cout << "~Base1" << std::endl;}
};

struct Derived1 : Base1 {
Derived1() {std::cout << "Derived1" << std::endl;}
~Derived1() {std::cout << "~Derived1" << std::endl;}
};

struct Base2 {
Base2() {std::cout << "Base2" << std::endl;}
~Base2() {std::cout << "~Base2" << std::endl;}
};

struct Derived2 : Base2 {
Derived2() {std::cout << "Derived2" << std::endl;}
~Derived2() {std::cout << "~Derived2" << std::endl;}
};

struct MostDerived: Derived2, Derived1 {
MostDerived() {std::cout << "MostDerived" << std::endl;}
~MostDerived() {std::cout << "~MostDerived" << std::endl;}
};

MostDerived{};


Что мы увидим в консоли, если запустим этот код? Вот это:

Base2
Derived2
Base1
Derived1
MostDerived
~MostDerived
~Derived1
~Base1
~Derived2
~Base2


Мы имеем 2 невиртуальные ветки наследования в класса MostDerived. В самих классах могут быть виртуальные функции, это роли не играет. В этом случае правила конструирования объекта такое: переходим в самую левую ветку и вызываем поочереди констукторы базовых классов сверху вниз. Как только дошли до MostDerived, переходим вправо в следующую ветку и также вызываем конструкторы сверху вниз. И только после этого конструируем MostDerived.

В общем случае, для n веток, можно представить, что наш наследник - корень дерева с n ветками. Так вот для такого графа конструкторы вызываются, как при обходе в глубину слева-направо.

А вот деструкторами все легко, если вы запомнили порядок вызовов конструкторов. Деструкторы выполняются в обратном порядке вызовов конструкторов соответствующих классов. Вы можете заметить, что вывод консоли из примера полностью симметричен относительно момента, когда объект уже создан.

Казалось бы, тривиальное знание для программиста. Но очень важно осознавать эти вещи для того, чтобы понять более сложные концепции или отвечать на более сложные вопросы. Например: "Зачем нужен виртуальный деструктор?", "В какой момент инициализируется указатель на виртуальную таблицу?", "Какой конкретно метод вызовется, если позвать виртуальный метод из констуруктора базового класса?". Без четкого понимания базы создания объектов, на эти вопросы конечно можно заучить ответы, но понимания никакого не будет. А программирование - это только про понимание, как и любая другая техническая дисциплина.

Поэтому

Understand essence of basic concepts. Stay cool.

#OOP #cppcore
Виртуальный деструктор
#новичкам

Возможно САМЫЙ популярный вопрос на собеседованиях на джунов и мидлов. Оно и справедливо в принципе: очень простой и понятный вопрос, но ответ на него требует хорошего уровня понимания ООП в принципе и как оно конкретно работает в плюсах. Динамический полиморфизм, наследование, порядок вызовов конструкторов и деструкторов - да, это база. Но именно ее и нужно проверить у начинающих и продолжающих разработчиков.

Обычно они заходят немного издалека и просят вангануть, что выведется в консоль для примерно такого кода:

struct Resource {
Resource() { std::cout << "Resourse has been acquired\n";}
~Resource() { std::cout << "Resource has been released\n";}
};

struct Base {
Base() { std::cout << "Base Constructor Called\n";}
~Base() { std::cout << "Base Destructor called\n";}
};

struct Derived1: Base {
Derived1() {
ptr = std::make_unique<Resource>();
std::cout << "Derived constructor called\n";
}
~Derived1() {std::cout << "Derived destructor called\n";}
private:
std::unique_ptr<Resource> ptr;
};

int main() {
Base *b = new Derived1();
delete b;
}


Вроде ничего сложного, но вот надо все штуки вспомнить, как там объекты создаются, в каком порядке что вызывается. Для начинающих тут часто затупки начинаются.

В коде вроде все хорошо написано и невнимательный кандидат может выдать вот это:

Base Constructor Called
Resourse has been acquired
Derived constructor called
Derived destructor called
Resource has been released
Base Destructor called


Вот тут-то его и подловили! На самом деле никакого деструктора наследника вызвано не будет и соответственно ресурсы не освободятся. Интервьюер дает наводку посмотреть на деструктор базового класса. И кандидат с красным лицом кричит: "Деструктор - невиртуальный! По указателю на базовый класс вызовется сразу деструктор базового класса, а деструктор дочернего не вызовется. Будет утечка памяти". Его так на курсах научили говорить. И дальше он выдает правильный вывод программы.

И тут интервьюер говорит: "А что будет, если наследник не будет содержать никаких полей? Какие проблемы будут у этого кода?".

И молодой разработчик в ступоре: он же знает, что невиртуальный деструктор приводит к утечкам. Но тут вроде как и утекать нечему. И говорит, что вроде как и проблем не будет.

Естественно, это неправда.

Если с виду ничего плохого не может произойти и даже при запуске программы ничего плохого не происходит - это не значит, что в программе нет проблем. Стандарт говорит:

if the static type of the object to be deleted 
is different from its dynamic type, the static type
shall be a base class of the dynamic type of
the object to be deleted and the static type
shall have a virtual destructor or
the behavior is undefined.


Отсутствие виртуального деструктора при удалении через базовый класс приводит к неопределенному поведению. И точка. Можете даже больше не упоминать утечки. Потому что может память утечь, а может и Пентагон задудосится от такой программы. Никто не знает.

Для корректного поведения полиморфных объектов и вызова деструктора дочернего класса вам обязательно нужен виртуальный деструктор базового класса.

Часто встречал эту проблему у младших разработчиков, да и сам я спотыкался на этом. Но теперь наши подписчики вооружены и опасны!

Stay armed. Stay cool.

#cppcore #interview
Default member initializer
#новичкам

Представьте себе большой класс, определенный целиком в одном файле. Этак строк на 300-400. Обычно принято в таком порядке описывать класс: конструкторы, деструктор, методы и только потом поля. Вариации могут быть разными, но из моей практики одно остается неизменным: объявления конструктора и полей находятся в разных концах тела класса. И вот бывают случаи, когда при создании объекта какие-то поля получают свое значение не из внешних параметров, а какие-то заранее заданные. Дефолтовые.

И вообще было бы очень приятненько видеть значения по умолчанию полей каждый раз, когда мы встречаем их объявления в теле класса. Если бегло читать код, то часто приходится смотреть на список полей. И было бы просто удобно не возвращаться к конструкторам каждый раз, чтобы вспомнить эти значения, а иметь их сразу рядом с объявлением полей.

Такие удобства появились у нас в C++11 - default member initializer. Это именно то, что и хотелось иметь в описанных выше ситуациях. Пример

template<typename T>
struct Stack {
// rule of 5
void push(const T& elem) {...}
void push(T&& elem) {...}
T& front() {...}
T& front() const {...}
void pop() {}
T GetMinElem() {...}
private:
std::deque<T> container;
T min_elem{Limit<T>::max_value};
}

Здесь мы создает простой шаблонный класс стека с одной особенностью: в каждый момент времени вы можете из этого стека получить самое минимальное значение из тех элементов, которые содержатся в этом стеке. Кстати, вам задачка на подумать, как такое можно сделать.

Пример здесь сильно укороченный. Если реализовывать все по чесноку, то реализация такого шаблонного класса займет приличное количество места. Вариантов методов и конструкторов может быть миллион. И я не очень хочу в них возвращаться, чтобы узнать, какое изначальное состояние имеет поле min_elem. А здесь мы сразу видим: у пустого стека примем значение минимального элемента, как максимально возможное значение этого типа. Тогда при добавлении в стек первого элемента для обновления минимума мы можем пользоваться тем же условием, что и для добавления остальных элементов
if (new_elem <= min_elem)
min_elem = new_elem;

Limit<T> - шаблонный класс, который хранит максимальное и минимальное значение для заданного шаблонного типа. Это может быть реализовано как угодно: через явные специализации, через if constexpr и так далее. Шаблонная магия в общем. Кто хочет, опять же, может в комментах попрактиковаться в реализации этого класса.

Кто не знал - пользуйтесь, вещь полезная.

Stay useful. Stay cool.

#cpp11 #cppcore
Сочетание member initialization list и default member initializer
#опытным

Вот здесь мы поговорили о том, почему важно соблюдать порядок следования полей класса в списке инициализации конструктора. Дело в том, что вне зависимости от того, как написан этот список, поля будут инициализироваться в порядке появления их объявления.

Также в С++11 у нас появилась фича под названием default member initializer. Это та самая штуковина, которая позволяет вам инициализировать нестатические поля класса не в конструкторе, а прям inplace. Типа того:

struct Class {
int field = 5;
};


Фича полезная, многие ей часто пользуются. Но вот возникает вопрос: как список инициализации конструктора взаимодействует с default member initializer? Если я инициализирую поля вне конструктора и компилятор видит эти значения явным образом, то возможно эти поля и получают значение первыми? Сейчас все узнаем.

Посмотрим на такой пример:

struct Char {
Char(char c) : field{c} {std::cout << "Char " << field << std::endl;}
Char() = default;
char field;
};

struct TestClass {
TestClass() : a{'1'},
c{'3'},
e{'5'} {}
Char a;
Char b = '2';
Char c;
Char d = '4';
Char e;
};


Есть простенький класс Char, который выводит на консоль момент создания объекта. И тестовый класс, на котором мы и проводим эксперимент. И в этом эксперименте мы и проверим, в каком порядке свои значения получают поля b и d, относительно a, c, e.

На самом деле здесь правило ровно такое же. Нестатические поля класса инициализируются в порядке их появления в описании класса. Поэтому вывод будет таким:

Char 1
Char 2
Char 3
Char 4
Char 5


С этим разобрались.

И тут назревает вопрос: а что будет, если я в начале проициализирую поле inplace, а потом еще раз в constructor initializer list? Какая из инициализаций победит другую? Или быть может они произойдут обе в какой-то очередности?

Выглядеть это может так:

struct Char {
Char(char c) : field{c} {std::cout << "Char " << field << std::endl;}
Char() = default;
char field;
};

struct TestClass {
TestClass() : a{'1'},
b{'2'},
c{'3'},
d{'4'},
e{'5'} {}
Char a;
Char b = 'b';
Char c;
Char d = 'd';
Char e;
};


Опять в подопытные мы взяли поля b и d и задали им значения с помощью default member initializer. А вдогонку еще и в списке инициализации присвоили им значение.

В такой ситуации default member initializer не играет никакой роли, блаженно складывает лапки и отдает бразды правления списку инициализации. Вывод будет тем же, что и в прошлом примере:

Char 1
Char 2
Char 3
Char 4
Char 5


Но это только список инициализации так работает. Если для инициализации поля вы используете обычный конструктор, то оно первый раз проинициализируется с помощью default member initializer(которая обязательно происходит до входа в тело конструктора), а второй раз - в теле конструктора.

struct TestClass {
TestClass() : a{'1'},
c{'3'},
d{'4'},
e{'5'} {b = '2';}
Char a;
Char b = 'b';
Char c;
Char d = 'd';
Char e;
};
// Output

Char 1
Char b
Char 3
Char 4
Char 5
Char 2


Пишите в комменты, если есть еще какие-то интересные кейсы взаимодействия этих сущностей. В будущем, разберем их на канале.

Mix things properly. Stay cool.

#cpp11 #cppcore
​​Member initialization. Best practices
#новичкам

Пост по запросу подписчика. Вот его вопрос.

И реально ведь непонятно, что делать. Столько разных вариантов и возможностей можно придумать для инициализации полей класса, что голова ходит кругом. Какой метод самый оптимальный? Сейчас и будем разбираться.

Здесь я буду приводить какое-то общие и распространенные принципы. К каждому можно придраться и сказать "а у нас в проекте по-другому!". Исключения и другие подходы есть везде. Если хотите высказать свои варианты - комменты открыты.

Начну с того, что нужно предпочитать инициализировать поля либо с помощью списка инициализации конструктора, либо с помощью default member initializer. Дело в том, что все поля на самом деле инициализируются до входа в конструктор! Если списком инициализации или default member initializer'ом не установлено, как поле должно инициализироваться, то в конструктор оно попадет инициализированным по умолчанию. Именно поэтому, например, не можете в конструкторе инициализировать объект класса, у которого нет конструктора по умолчанию. Будет ошибка компиляции и у вас потребуют дефолтный конструктор. Запомните: конструктор нужен для нетривиальных вещей. С простой иницализацией справятся ctor initialization list и инициализатор по умолчанию.

Далее. Остается 2 способа, как инициализировать. Какой из них выбрать и в какой пропорции смешивать?

CppCoreGuidelies говорят нам: "Prefer default member initializers to member initializers in constructors for constant initializers".

То есть, если инициализатор константный, то используйте default member initializer.

Причина: inplace инициализатор делает явным то, что именно эти дефолтовые значения будут использоваться во всех конструкторах. Пример:

class X { // BAD 
int i;
string s;
int j;
public:
X() :i{666}, s{"qqq"} { } // j is uninitialized
X(int ii) :i{ii} {} // s is "" and j is uninitialized
// ...
};


Как в этом случае читатель кода поймет, была ли инициализация j специально пропущена(что скорее всего не очень гуд) или было ли для s намеренным выставление его значения в "qqq" в первом случае и в пустую строку во втором случае(почти стопроцентный баг)? Все эти ошибки могут появиться при добавлении новых полей в класс. По классике: добавили новое поле, использовали его в методах, но вот в одном месте упустили инициализацию. Кейс настолько жизненный, что мое почтение.

Более адекватный вариант:
class X2 { 
int i {666};
string s {"qqq"};
int j {0};
public:
X2() = default; // all members are initialized to their defaults
X2(int ii) :i{ii} {} // s and j initialized to their defaults
// ...
};


Красота. Все в одном месте, все четко и понятно. Тут используется одна фишка: у вас есть несколько конструкторов, которые могут выставлять значения полям, а могут и не выставлять. Вы в одном месте определяете дефолтные значения и в списках инициализации конструкторов переопределяете инициализирующее значение для нужного поля, так как список подавляет инициализатор по умолчанию.

Также это более читаемый вариант, так как все дефолтные значения находятся в одном месте и не нужно бегать глазами по коду в их поисках.

Используйте default member initializer и будет вам счастье!

Stay happy. Stay cool.

#cpp11 #cppcore #goodpractice