Анализ данных (Data analysis)
45.2K subscribers
2.11K photos
232 videos
1 file
1.9K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ JanusFlow: унифицированная MMLM понимания и генерации изображений от DeepSeekAI.

JanusFlow - уникальная комбинация LLM с Rectified Flow и SDXL-VAE для задач понимания и генерации изображений.

Архитектура JanusFlow построена на улучшенной версии DeepSeek-LLM-1.3B, дополненной двумя специализированными энкодерами изображений: SigLIP для задач понимания и ConvNeXt для задач генерации. Разделение энкодеров предотвращает интерференцию задач и повышает эффективность модели.

JanusFlow обучалась в 3 этапа. На первом этапе адаптировались линейные слои, энкодер и декодер генерации.

На втором этапе - унифицированное предварительное обучение всей модели, за исключением визуального энкодера.

На третьем этапе - SFT с использованием инструкций, диалогов и примеров генерации изображений.

В тестах генерации изображений MJHQ FID-30k, GenEval и DPG-Bench, JanusFlow превосходит SD1.5 и SDXL. В тестах понимания MMBench, SeedBench и GQA, JanusFlow превосходит LLaVA-v1.5 и Qwen-VL-Chat.

Локальный запуск возможен в CLI на Transformers и с webUI на Gradio. Примеры CLI-инференса для задач понимания и генерации можно найти в репозитории проекта.

▶️Установка и запуск с GradioUI:

# install the necessary dependencies
pip install -e .
pip install diffusers[torch]

# run local gradio demo
pip install -e .[gradio]

python demo/app_janusflow.py


📌Лицензирование кода : MIT License.

📌Лицензирование модели: DeepSeek Model License.


🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Deepseek #JanusFlow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 SmolVLM — маленький, но мощный мультимодальный прорыв.

Сегодня вышел технический отчёт о SmolVLM — ультра-компактной VLM-модели (всего 256M параметров), которая работает в менее чем 1 ГБ ОЗУ и обходит старые модели 80B, выпущенные полтора года назад!

📏 Контекст — это наше всё: Увеличение длины контекста с 2K до 16K дало +60% к качеству. Даже маленькие модели выигрывают от увелечения памяти.

🔬 SigLIP: меньше — лучше: Вместо классического 400M SigLIP авторы использовали базовую 80M версию — и получили тот же результат при 20% размера.

🧩 Pixel shuffling : Аggressive pixel shuffling помог сократить длину последовательностей в 16 раз без потери качества.

📍 Learnable positional tokens > raw tokens: В маленьких моделях обучаемые позиционные токены дали значительный прирост точности.

🎬 Спец-токены: Специальные "intro/outro" токены и системные промпты дали буст особенно для задач работы видео.

🧠 CoT — с умом: Слишком много Chain-of-Thought данных ухудшает результаты маленьких моделей. Меньше = умнее.

📽 Длиннее видео = лучше: Увеличение длины видео во время обучения улучшило понимание и изображений, и видео.

🚀 SmolVLM — это:
Три версии: 256M, 500M, 2.2B — каждая задаёт новую планку для low-resource inference.

Real-time inference на iPhone 15 — прямо с камеры, без серверов.

В браузере? Да! 40–80 токенов/сек — напрямую в вебе, без ухищрений.

📄 Подробности в репорте

#SmolVLM #EfficientAI #Multimodal #VLM #EdgeAI #SigLIP #AIonMobile
🎥 Video-XL-2 — модель для понимании длинных видео

Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.

🔑 Ключевые особенности:
Высокая скорость + низкое потребление памяти
🎯 SOTA-показатели среди open-source моделей с аналогичным размером
🔁 Поддержка до 10 000+ кадров на одной GPU
🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование

📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.

🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)

📎 Подробнее и демо

@data_analysis_ml

#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI