Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ JanusFlow: унифицированная MMLM понимания и генерации изображений от DeepSeekAI.

JanusFlow - уникальная комбинация LLM с Rectified Flow и SDXL-VAE для задач понимания и генерации изображений.

Архитектура JanusFlow построена на улучшенной версии DeepSeek-LLM-1.3B, дополненной двумя специализированными энкодерами изображений: SigLIP для задач понимания и ConvNeXt для задач генерации. Разделение энкодеров предотвращает интерференцию задач и повышает эффективность модели.

JanusFlow обучалась в 3 этапа. На первом этапе адаптировались линейные слои, энкодер и декодер генерации.

На втором этапе - унифицированное предварительное обучение всей модели, за исключением визуального энкодера.

На третьем этапе - SFT с использованием инструкций, диалогов и примеров генерации изображений.

В тестах генерации изображений MJHQ FID-30k, GenEval и DPG-Bench, JanusFlow превосходит SD1.5 и SDXL. В тестах понимания MMBench, SeedBench и GQA, JanusFlow превосходит LLaVA-v1.5 и Qwen-VL-Chat.

Локальный запуск возможен в CLI на Transformers и с webUI на Gradio. Примеры CLI-инференса для задач понимания и генерации можно найти в репозитории проекта.

▶️Установка и запуск с GradioUI:

# install the necessary dependencies
pip install -e .
pip install diffusers[torch]

# run local gradio demo
pip install -e .[gradio]

python demo/app_janusflow.py


📌Лицензирование кода : MIT License.

📌Лицензирование модели: DeepSeek Model License.


🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Deepseek #JanusFlow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM