Анализ данных (Data analysis)
45.1K subscribers
2.02K photos
204 videos
1 file
1.82K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
⚡️Строим рекомендательную систему фильмов на Kaggle

Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬

Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.

Что будем делать на вебинаре:
🟠Разберем имеющиеся данные фильмов с их оценками
🟠Проведем предобработку данных
🟠Построим рекомендательную систему на основе машинного обучения
🟠Проведем расчет и анализ метрик на основе результатов работы модели

Вебинар будет интересен как новичкам, так и уже опытным специалистам

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🎮 VideoGameBench — первый в своём роде бенчмарк, который проверяет возможности VLM в реальном времени играть в 20 классических игр для Game Boy и MS‑DOS:

В списке есть: Doom II и Quake до Pokemon Red и Super Mario Land и другие.

Например, при игре в Doom. Sonnet 3.7 прошёл дальше всех и даже нашёл «синюю комнату»!

Режим реального времени: агент получает только raw‑фреймы и контролирует игру «на ходу» в режиме реального времени.

VideoGameBench‑Lite: среда автоматически ставит игру на паузу, пока модель думает, чтобы убрать задержки инференса и дать время на обдуманные действия
vgbench.com
.
Единый интерфейс: абстрагируем эмуляторы (PyBoy для Game Boy, DOSBox для MS‑DOS) и предоставляем API для передачи изображений, нажатий кнопок и проверки завершения игры
vgbench.com

Open‑source: код и примеры агентов доступны на GitHub — клонируйте, форкайте и тестируйте свои LLM/VLM‑агенты!
vgbench.com


📂 Репозиторий: https://github.com/alexzhang13/videogamebench
🔗 Документация и примеры агентов: https://www.vgbench.com/

#VideoGameBench #VLM #AI #ReinforcementLearning #AIGC

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Tesla показала суперкомпьютер Dojo.

Tesla опубликовала изображения своего суперкомпьютера Dojo - системы, созданной на заказ для обучения ИИ-моделей проекта полного автономного вождения (FSD). Фото были опубликованы 17 апреля не случайно - это совпало с недавним заявлением Илона Маска о расширении крупного вычислительного кластера в Giga Texas. Dojo полностью работает на чипах, разработанных Tesla.
TeslaAI в Х (ex-Twitter)

✔️ Chatbot Arena трансформируется в отдельную компанию Arena Intelligence Inc.

Популярная платформа для оценки ИИ-моделей Chatbot Arena, которую используют ведущие лаборатории ИИ, официально становится компанией Arena Intelligence Inc. Это позволит команде расширить ресурсы для развития сервиса, сохранив нейтралитет тестирования. Проект, запущенный в 2023 году исследователями из UC Berkeley, давно стал ключевым инструментом для сравнения языковых моделей — его рейтинги влияют на маркетинг и развитие ИИ.

До сих пор Chatbot Arena работала на грантах и спонсорской поддержке от Kaggle, Google, Andreessen Horowitz и Together AI.
bloomberg.com

✔️ Anthropic инвестирует 1 млн. долларов в Goodfire.

Anthropic впервые инвестировала в стартап, поддержав Goodfire. Инвестиционный раунд, возглавляемый Menlo Ventures, собрал в общей сложности 50 миллионов долларов, а Anthropic внесла 1 миллион долларов.

Goodfire специализируется на механистической интерпретации - методе, который помогает разработчикам понять, как работают системы ИИ, причем методы Goodfire считается более продвинутым, чем существующие инструменты, используемые Anthropic.
theinformation.com

✔️ Википедия выпустила датасет для обучения ИИ.

Википедия представила структурированный датасет на платформе Kaggle, чтобы облегчить разработчикам ИИ доступ к данным и снизить нагрузку на свою инфраструктуру. Вместо парсинга сырого текста ботамы, теперь доступны JSON-файлы на английском и французском языках с разделами статей, краткими описаниями, инфобоксами и ссылками на изображения.

Датасет оптимизирован для ML-задач: файнтюна моделей, анализа и тестирования. Это часть стратегии Викимедии, которая не только экономит ресурсы Википедии, но и упрощает работу с контентом — вместо борьбы с ботами разработчики получают готовый инструмент.
enterprise.wikimedia.com

✔️ Количество полностью сгенерированной ИИ-музыки выросло в 2 раза на платформе Deezer.

Deezer, французский музыкальный стриминговый сервис, сообщил, что около 18 % песен, загружаемых на его платформу, создаются ИИ. Этот показатель непрерывно растет: ежедневно на платформу загружается около 20 000 композиций, созданных искусственным интеллектом, что почти вдвое больше, чем 4 месяца назад.

Deezer внедрил инструмент обнаружения ИИ для выявления музыки, созданной с помощью Suno и Udio в январе 2025 года, когда ежедневное количество загружаемых песен, созданных ИИ, составляло около 10 000.
billboard.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Мечтаешь хакнуть свою продуктивность с помощью ИИ? Приходи на AI-митап в Нижнем Новгороде! 👌

📍 Встречаемся 24 апреля в 18:00 по адресу: ул. Октябрьская, 35, пространство «Гараж».

Регистрируйся на митап и готовься к апгрейду своих скиллов!
🔥 Promptify: Python library for LLM Prompt Management

В примере на картинке Promptify использует OpenAI для выполнения распознавания именованных сущностей (NER) в медицинском тексте.

Она извлекает ключевые данные, такие как возраст, диагнозы и симптомы, из истории болезни пациента и структурирует их в удобный формат.

- Что она делает:
Берёт предложение: "Пациент — 93-летняя женщина с хронической болью в правом бедре, остеопорозом, гипертонией, депрессией и хронической фибрилляцией предсердий, поступившая для оценки и лечения сильной тошноты, рвоты и инфекции мочевыводящих путей."

Выдаёт структурированные данные, выделяя сущности:
93-летняя → Возраст

хроническая боль в правом бедре → Медицинское состояние

сильная тошнота и рвота → Симптом

Плюс метаданные: Отделение: Внутренняя медицина, Группа: Гериатрия
Почему это круто:
- Упрощает создание промптов для задач NLP.

- Поддерживает модели вроде GPT, PaLM и другие.

- Выдаёт структурированный результат (списки, словари) для лёгкой обработки.

pip3 install promptify

🖥 Github

#Python #ИИ #NLP #Promptify #МашинноеОбучение
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Gemma 3 QAT — обновлённую версию своей модели Gemma 3, оптимизированную с помощью технологии Quantization-Aware Training (QAT).

Эта модификация позволяет запускать модель на видеокартах с ограниченными ресурсами, сохраняя при этом высокое качество генерации.​

🔍 Что нового в Gemma 3 QAT
QAT-оптимизация: Благодаря использованию Quantization-Aware Training модель требует меньше оперативной памяти, что делает её доступной для запуска на более широком спектре устройств.​

Поддержка BF16: Gemma 3 QAT использует формат BFloat16, обеспечивая высокую производительность при меньших требованиях к вычислительным ресурсам.​

Улучшенная доступность: Теперь разработчики могут использовать мощные возможности Gemma 3 на стандартных GPU, таких как NVIDIA H100, без необходимости в специализированном оборудовании.​

Эти улучшения делают Gemma 3 QAT привлекательным выбором для разработчиков, стремящихся интегрировать передовые возможности ИИ в свои приложения без значительных затрат на оборудование.​

Подробнее о релизе можно узнать в официальном блоге Google: https://developers.googleblog.com/en/gemma-3-quantized-aware-trained-state-of-the-art-ai-to-consumer-gpus/

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Исследователи NYU представили RUKA (да-да)

Это — открытый робот‑манипулятор с приводом на сухожилиях и 15 степенями свободы, стоимостью всего $1.3 тыс., который может работать 20 часов подряд без потери производительности.

Он обучается моделям «сустав–привод» и «кончик пальца–привод» на основе данных системы захвата движения.

🔜 Подробнее

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 LLM Reasoners — это библиотека с открытым исходным кодом, разработанная для улучшения способности больших языковых моделей выполнять сложные рассуждения с использованием передовых алгоритмов! Она рассматривает многошаговые рассуждения как процесс планирования и поиска оптимальной цепочки рассуждений, достигая баланса между исследованием и эксплуатацией с помощью концепций "Мировой модели" и "Вознаграждения".

🔎 Основные особенности LLM Reasoners:

🌟 Современные алгоритмы рассуждений: Библиотека предлагает новейшие алгоритмы поиска для рассуждений с LLM, такие как Reasoner Agent, масштабирование на этапе вывода с помощью PRM, рассуждение через планирование, MCTS, Tree-of-Thoughts и другие.

🌟 Интуитивная визуализация и интерпретация: LLM Reasoners предоставляет инструменты визуализации, помогающие пользователям понимать процесс рассуждений. Даже для сложных алгоритмов, таких как Монте-Карло Tree Search, пользователи могут легко диагностировать и понимать процесс с помощью одной строки кода на Python.

🌟 Эффективные рассуждения с LLM: Библиотека оптимизирует производительность передовых методов рассуждений, интегрируя SGLang, высокопроизводительную инфраструктуру вывода LLM, поддерживающую структурированную генерацию. Также поддерживаются другие бэкенды LLM, такие как Huggingface Transformers, OpenAI API, Exllama, Fairscale, Llama.cpp и другие.

🌟 Строгая реализация и воспроизводимость: LLM Reasoners уделяет приоритетное внимание точности и надежности своих реализаций, обеспечивая, что алгоритмы не являются лишь теоретическими концепциями, а практически применимыми инструментами. Все методы тщательно разработаны, чтобы соответствовать их оригинальным формулировкам и производительности.

🔐 Лицензия: Apache-2.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
В основе любого сильного проекта стоит сильный специалист.

В IT-мире сложно представить востребованного специалиста, который не разбирается в том, как работают: архитектура, API, базы данных, алгоритмы.

Без этого никуда.

И не страшно, если вы пока плохо разбираетесь в каких-то современных системах. Хуже, если продолжаете игнорировать свои пробелы в hard skills.

Начните с бесплатных уроков по архитектуре и интеграциям:

▪️мощный инструмент — SOAP UI
▪️подробное описание процесса загрузки сайта
▪️модель TCP/IP и устройства
▪️XML — это вам не ХSD

Присоединяйтесь в чат-боте по ссылке:
👇
@studyit_help_bot

🚀 Скидка на полный курс от канала — 1 000 ₽ на Stepik по промокоду DATAA до конца апреля
🔮 Instill Core — универсальный инструмент для работы с неструктурированными данными.

Этот open-source проект предлагает комплексное решение для ETL-обработки, подготовки данных для ИИ и развертывания LLM-моделей. Платформа объединяет в единый workflow обработку документов, изображений и видео, что особенно ценно для RAG-сценариев и построения AI-пайплайнов.

Instill Core легко встраивается в существующие системы через Python/TypeScript SDK или CLI. Локальный запуск возможен через Docker, а готовые рецепты позволяют быстро развернуть парсинг PDF, веб-скрапинг или сегментацию изображений.

🔗 GitHub

@data_analysis_ml
Поступление в ШАД: даже одна попытка откроет путь к большим возможностям!

Попробовать поступить в Школу анализа данных Яндекса может каждый, кто увлечён Data Science: неважно, учитесь вы в вузе, работаете в IT или просто любите разбираться в сложном. Если вас тянет к задачам, над которыми ломают голову лучшие умы, — попробовать точно стоит!

В ШАДе вас ждёт не просто теория — здесь с первого дня погружаются в практику: осваивают сложные концепции машинного обучения, решают ИИ-задачи, которые вчера казались невозможными, и получают мощный буст для карьеры.

Создавать инновационные решения, продвигать науку, запускать стартапы или делиться опытом — всё это доступно выпускникам ШАДа! Если хотите стать одним из них, не теряйте времени — подайте заявку до 4 мая!

Классные плюшки: обучение бесплатное, а если в вашем городе нет филиала, заниматься можно онлайн. Не упустите шанс: попробуйте поступить и откройте перед собой новые горизонты!
🔧 LMOps — исследовательская платформа Microsoft для работы с LLМ.

В данном проекте собраны ключевые разработки, включая Promptist и LLMA. Особый интерес представляет исследование in-context learning — авторы показали, что LLM неявно выполняют тонкую настройку через механизмы внимания.

Проект активно развивается: только за 2024 год вышло 6 статей на EMNLP с новыми методами retrieval-augmented generation и alignment.

🔗 GitHub

@data_analysis_ml
🗣 Dia — это новаяоткрытая модель текст‑в‑речь от Nari Labs с 1.6 млрд параметров, способная генерировать полноценный диалог с богатой экспрессией.

Ключевые возможности:
- Ультра‑реалистичный диалог. Генерация согласованных реплик двух «говорящих» персонажей, помеченных тэгами [S1] и [S2] в одном тексте.

- Эмоции и тон. Можно задавать тональность и интонацию через акустический запрос (audio prompt), а также управлять «невербалкой»: смех, кашель, вздохи и т. д.

- Voice cloning. Клонирование голоса по короткому образцу: подгрузите аудио и его транскрипт, и модель адаптируется под заданный тембр
GitHub

Модель написана на Python (100 % кода) с использованием PyTorch 2.0 и CUDA 12.6

Производительность и требования:

Полная версия требует ≈10 GB VRAM; в будущем планируется квантование модели.

Установка и запуск:


pip install git+https://github.com/nari-labs/dia.git
git clone https://github.com/nari-labs/dia.git
cd dia
uv run app.py
# или python app.py

В интерфейсе Gradio сразу можно оценить разницу с ElevenLabs и Sesame CSM‑1B

Лицензия: Apache 2.0.

Dia отлично подходит для ML‑исследований в TTS: вы получаете открытые весовые файлы, гибкий API для скриптов и UI для быстрой проверки гипотез.

На данный момент Dia поддерживает генерацию речи только на английском языке

Demo
Github
HF

@data_analysis_ml
Как повысить свои навыки в аналитике данных за 90 минут?

Прийти на бесплатный практический урок 28 апреля, где мы расскажем, как эффективно работать с данными с помощью Python и Pandas: как заполнять пропуски, устранять дубликаты и правильно работать с выбросами.

👥 Кому будет полезен вебинар?
- тем, кто только начинает свой путь в Data Science и хочет освоить базовые навыки
- тем, кто работает с данными в электронных таблицах, но хочет перейти на Python и Pandas
- тем, кто сталкивался с ошибками при анализе из-за «мусора» в данных
- тем, кто планирует изучать машинное обучение (ML), где чистота данных критически важна

📍 Зарегистрируйтесь и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/iYWj/?erid=2W5zFG4k8bA

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Forwarded from Machinelearning
✔️ OpenAI добавляет невидимые символы в инференс моделей o3 и o4-mini.

Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.

Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.

OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com

✔️ CharacterAI запускает AvatarFX: генерация видео с ИИ.

CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.

Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai

✔️ Dia: открытая ИИ-модель для генерации речи с контролем над интонацией и невербальными элементами.

Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.

Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com

✔️ Physical Intelligence выпустила модель для робототехники π-0,5.

Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.

Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company

✔️ Фильмы с ИИ смогут претендовать на «Оскар».

Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.

Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
📎 X-AnyLabeling — профессиональный инструмент для автоматической разметки данных с интегрированным ИИ. Он представляет собой расширенную версию популярного AnyLabeling, дополненного промышленными функциями для профессионального использования.

Проект поддерживает работу как с изображениями, так и с видеофайлами, включая сложные задачи трекинга объектов в потоковом режиме. Все благодаря встроенной интеграции с более чем 20 современными моделями компьютерного зрения, а также гибкой системе работы с форматами аннотаций, охватывающая все основные стандарты отрасли

🤖 GitHub

@data_analysis_ml