Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
Вебинар будет интересен как новичкам, так и уже опытным специалистам
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
В списке есть: Doom II и Quake до Pokemon Red и Super Mario Land и другие.
Например, при игре в Doom. Sonnet 3.7 прошёл дальше всех и даже нашёл «синюю комнату»!
Режим реального времени: агент получает только raw‑фреймы и контролирует игру «на ходу» в режиме реального времени.
VideoGameBench‑Lite: среда автоматически ставит игру на паузу, пока модель думает, чтобы убрать задержки инференса и дать время на обдуманные действия
vgbench.com
.
Единый интерфейс: абстрагируем эмуляторы (PyBoy для Game Boy, DOSBox для MS‑DOS) и предоставляем API для передачи изображений, нажатий кнопок и проверки завершения игры
vgbench.com
Open‑source: код и примеры агентов доступны на GitHub — клонируйте, форкайте и тестируйте свои LLM/VLM‑агенты!
vgbench.com
📂 Репозиторий: https://github.com/alexzhang13/videogamebench
🔗 Документация и примеры агентов: https://www.vgbench.com/
#VideoGameBench #VLM #AI #ReinforcementLearning #AIGC
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Tesla опубликовала изображения своего суперкомпьютера Dojo - системы, созданной на заказ для обучения ИИ-моделей проекта полного автономного вождения (FSD). Фото были опубликованы 17 апреля не случайно - это совпало с недавним заявлением Илона Маска о расширении крупного вычислительного кластера в Giga Texas. Dojo полностью работает на чипах, разработанных Tesla.
TeslaAI в Х (ex-Twitter)
Популярная платформа для оценки ИИ-моделей Chatbot Arena, которую используют ведущие лаборатории ИИ, официально становится компанией Arena Intelligence Inc. Это позволит команде расширить ресурсы для развития сервиса, сохранив нейтралитет тестирования. Проект, запущенный в 2023 году исследователями из UC Berkeley, давно стал ключевым инструментом для сравнения языковых моделей — его рейтинги влияют на маркетинг и развитие ИИ.
До сих пор Chatbot Arena работала на грантах и спонсорской поддержке от Kaggle, Google, Andreessen Horowitz и Together AI.
bloomberg.com
Anthropic впервые инвестировала в стартап, поддержав Goodfire. Инвестиционный раунд, возглавляемый Menlo Ventures, собрал в общей сложности 50 миллионов долларов, а Anthropic внесла 1 миллион долларов.
Goodfire специализируется на механистической интерпретации - методе, который помогает разработчикам понять, как работают системы ИИ, причем методы Goodfire считается более продвинутым, чем существующие инструменты, используемые Anthropic.
theinformation.com
Википедия представила структурированный датасет на платформе Kaggle, чтобы облегчить разработчикам ИИ доступ к данным и снизить нагрузку на свою инфраструктуру. Вместо парсинга сырого текста ботамы, теперь доступны JSON-файлы на английском и французском языках с разделами статей, краткими описаниями, инфобоксами и ссылками на изображения.
Датасет оптимизирован для ML-задач: файнтюна моделей, анализа и тестирования. Это часть стратегии Викимедии, которая не только экономит ресурсы Википедии, но и упрощает работу с контентом — вместо борьбы с ботами разработчики получают готовый инструмент.
enterprise.wikimedia.com
Deezer, французский музыкальный стриминговый сервис, сообщил, что около 18 % песен, загружаемых на его платформу, создаются ИИ. Этот показатель непрерывно растет: ежедневно на платформу загружается около 20 000 композиций, созданных искусственным интеллектом, что почти вдвое больше, чем 4 месяца назад.
Deezer внедрил инструмент обнаружения ИИ для выявления музыки, созданной с помощью Suno и Udio в январе 2025 года, когда ежедневное количество загружаемых песен, созданных ИИ, составляло около 10 000.
billboard.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Мечтаешь хакнуть свою продуктивность с помощью ИИ? Приходи на AI-митап в Нижнем Новгороде! 👌
📍 Встречаемся 24 апреля в 18:00 по адресу: ул. Октябрьская, 35, пространство «Гараж».
Регистрируйся на митап и готовься к апгрейду своих скиллов!
📍 Встречаемся 24 апреля в 18:00 по адресу: ул. Октябрьская, 35, пространство «Гараж».
Регистрируйся на митап и готовься к апгрейду своих скиллов!
В примере на картинке Promptify использует OpenAI для выполнения распознавания именованных сущностей (NER) в медицинском тексте.
Она извлекает ключевые данные, такие как возраст, диагнозы и симптомы, из истории болезни пациента и структурирует их в удобный формат.
- Что она делает:
Берёт предложение: "Пациент — 93-летняя женщина с хронической болью в правом бедре, остеопорозом, гипертонией, депрессией и хронической фибрилляцией предсердий, поступившая для оценки и лечения сильной тошноты, рвоты и инфекции мочевыводящих путей."
Выдаёт структурированные данные, выделяя сущности:
93-летняя → Возраст
хроническая боль в правом бедре → Медицинское состояние
сильная тошнота и рвота → Симптом
Плюс метаданные: Отделение: Внутренняя медицина, Группа: Гериатрия
Почему это круто:
- Упрощает создание промптов для задач NLP.
- Поддерживает модели вроде GPT, PaLM и другие.
- Выдаёт структурированный результат (списки, словари) для лёгкой обработки.
pip3 install promptify
#Python #ИИ #NLP #Promptify #МашинноеОбучение
Please open Telegram to view this post
VIEW IN TELEGRAM
Эта модификация позволяет запускать модель на видеокартах с ограниченными ресурсами, сохраняя при этом высокое качество генерации.
🔍 Что нового в Gemma 3 QAT
QAT-оптимизация: Благодаря использованию Quantization-Aware Training модель требует меньше оперативной памяти, что делает её доступной для запуска на более широком спектре устройств.
Поддержка BF16: Gemma 3 QAT использует формат BFloat16, обеспечивая высокую производительность при меньших требованиях к вычислительным ресурсам.
Улучшенная доступность: Теперь разработчики могут использовать мощные возможности Gemma 3 на стандартных GPU, таких как NVIDIA H100, без необходимости в специализированном оборудовании.
Эти улучшения делают Gemma 3 QAT привлекательным выбором для разработчиков, стремящихся интегрировать передовые возможности ИИ в свои приложения без значительных затрат на оборудование.
Подробнее о релизе можно узнать в официальном блоге Google: https://developers.googleblog.com/en/gemma-3-quantized-aware-trained-state-of-the-art-ai-to-consumer-gpus/
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Исследователи NYU представили RUKA (да-да)
Это — открытый робот‑манипулятор с приводом на сухожилиях и 15 степенями свободы, стоимостью всего $1.3 тыс., который может работать 20 часов подряд без потери производительности.
Он обучается моделям «сустав–привод» и «кончик пальца–привод» на основе данных системы захвата движения.
🔜 Подробнее
@data_analysis_ml
Это — открытый робот‑манипулятор с приводом на сухожилиях и 15 степенями свободы, стоимостью всего $1.3 тыс., который может работать 20 часов подряд без потери производительности.
Он обучается моделям «сустав–привод» и «кончик пальца–привод» на основе данных системы захвата движения.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
В основе любого сильного проекта стоит сильный специалист.
В IT-мире сложно представить востребованного специалиста, который не разбирается в том, как работают: архитектура, API, базы данных, алгоритмы.
Без этого никуда.
И не страшно, если вы пока плохо разбираетесь в каких-то современных системах. Хуже, если продолжаете игнорировать свои пробелы в hard skills.
Начните с бесплатных уроков по архитектуре и интеграциям:
▪️мощный инструмент — SOAP UI
▪️подробное описание процесса загрузки сайта
▪️модель TCP/IP и устройства
▪️XML — это вам не ХSD
Присоединяйтесь в чат-боте по ссылке:
👇
@studyit_help_bot
🚀 Скидка на полный курс от канала — 1 000 ₽ на Stepik по промокоду DATAA до конца апреля
В IT-мире сложно представить востребованного специалиста, который не разбирается в том, как работают: архитектура, API, базы данных, алгоритмы.
Без этого никуда.
И не страшно, если вы пока плохо разбираетесь в каких-то современных системах. Хуже, если продолжаете игнорировать свои пробелы в hard skills.
Начните с бесплатных уроков по архитектуре и интеграциям:
▪️мощный инструмент — SOAP UI
▪️подробное описание процесса загрузки сайта
▪️модель TCP/IP и устройства
▪️XML — это вам не ХSD
Присоединяйтесь в чат-боте по ссылке:
👇
@studyit_help_bot
🚀 Скидка на полный курс от канала — 1 000 ₽ на Stepik по промокоду DATAA до конца апреля
🔮 Instill Core — универсальный инструмент для работы с неструктурированными данными.
Этот open-source проект предлагает комплексное решение для ETL-обработки, подготовки данных для ИИ и развертывания LLM-моделей. Платформа объединяет в единый workflow обработку документов, изображений и видео, что особенно ценно для RAG-сценариев и построения AI-пайплайнов.
Instill Core легко встраивается в существующие системы через Python/TypeScript SDK или CLI. Локальный запуск возможен через Docker, а готовые рецепты позволяют быстро развернуть парсинг PDF, веб-скрапинг или сегментацию изображений.
🔗 GitHub
@data_analysis_ml
Этот open-source проект предлагает комплексное решение для ETL-обработки, подготовки данных для ИИ и развертывания LLM-моделей. Платформа объединяет в единый workflow обработку документов, изображений и видео, что особенно ценно для RAG-сценариев и построения AI-пайплайнов.
Instill Core легко встраивается в существующие системы через Python/TypeScript SDK или CLI. Локальный запуск возможен через Docker, а готовые рецепты позволяют быстро развернуть парсинг PDF, веб-скрапинг или сегментацию изображений.
🔗 GitHub
@data_analysis_ml
Поступление в ШАД: даже одна попытка откроет путь к большим возможностям!
Попробовать поступить в Школу анализа данных Яндекса может каждый, кто увлечён Data Science: неважно, учитесь вы в вузе, работаете в IT или просто любите разбираться в сложном. Если вас тянет к задачам, над которыми ломают голову лучшие умы, — попробовать точно стоит!
В ШАДе вас ждёт не просто теория — здесь с первого дня погружаются в практику: осваивают сложные концепции машинного обучения, решают ИИ-задачи, которые вчера казались невозможными, и получают мощный буст для карьеры.
Создавать инновационные решения, продвигать науку, запускать стартапы или делиться опытом — всё это доступно выпускникам ШАДа! Если хотите стать одним из них, не теряйте времени — подайте заявку до 4 мая!
Классные плюшки: обучение бесплатное, а если в вашем городе нет филиала, заниматься можно онлайн. Не упустите шанс: попробуйте поступить и откройте перед собой новые горизонты!
Попробовать поступить в Школу анализа данных Яндекса может каждый, кто увлечён Data Science: неважно, учитесь вы в вузе, работаете в IT или просто любите разбираться в сложном. Если вас тянет к задачам, над которыми ломают голову лучшие умы, — попробовать точно стоит!
В ШАДе вас ждёт не просто теория — здесь с первого дня погружаются в практику: осваивают сложные концепции машинного обучения, решают ИИ-задачи, которые вчера казались невозможными, и получают мощный буст для карьеры.
Создавать инновационные решения, продвигать науку, запускать стартапы или делиться опытом — всё это доступно выпускникам ШАДа! Если хотите стать одним из них, не теряйте времени — подайте заявку до 4 мая!
Классные плюшки: обучение бесплатное, а если в вашем городе нет филиала, заниматься можно онлайн. Не упустите шанс: попробуйте поступить и откройте перед собой новые горизонты!
🔧 LMOps — исследовательская платформа Microsoft для работы с LLМ.
В данном проекте собраны ключевые разработки, включая Promptist и LLMA. Особый интерес представляет исследование in-context learning — авторы показали, что LLM неявно выполняют тонкую настройку через механизмы внимания.
Проект активно развивается: только за 2024 год вышло 6 статей на EMNLP с новыми методами retrieval-augmented generation и alignment.
🔗 GitHub
@data_analysis_ml
В данном проекте собраны ключевые разработки, включая Promptist и LLMA. Особый интерес представляет исследование in-context learning — авторы показали, что LLM неявно выполняют тонкую настройку через механизмы внимания.
Проект активно развивается: только за 2024 год вышло 6 статей на EMNLP с новыми методами retrieval-augmented generation и alignment.
🔗 GitHub
@data_analysis_ml
🗣 Dia — это новаяоткрытая модель текст‑в‑речь от Nari Labs с 1.6 млрд параметров, способная генерировать полноценный диалог с богатой экспрессией.
Ключевые возможности:
- Ультра‑реалистичный диалог. Генерация согласованных реплик двух «говорящих» персонажей, помеченных тэгами [S1] и [S2] в одном тексте.
- Эмоции и тон. Можно задавать тональность и интонацию через акустический запрос (audio prompt), а также управлять «невербалкой»: смех, кашель, вздохи и т. д.
- Voice cloning. Клонирование голоса по короткому образцу: подгрузите аудио и его транскрипт, и модель адаптируется под заданный тембр
GitHub
Модель написана на Python (100 % кода) с использованием PyTorch 2.0 и CUDA 12.6
Производительность и требования:
Полная версия требует ≈10 GB VRAM; в будущем планируется квантование модели.
Установка и запуск:
В интерфейсе Gradio сразу можно оценить разницу с ElevenLabs и Sesame CSM‑1B
Лицензия: Apache 2.0.
Dia отлично подходит для ML‑исследований в TTS: вы получаете открытые весовые файлы, гибкий API для скриптов и UI для быстрой проверки гипотез.
На данный момент Dia поддерживает генерацию речи только на английском языке
▪Demo
▪Github
▪HF
@data_analysis_ml
Ключевые возможности:
- Ультра‑реалистичный диалог. Генерация согласованных реплик двух «говорящих» персонажей, помеченных тэгами [S1] и [S2] в одном тексте.
- Эмоции и тон. Можно задавать тональность и интонацию через акустический запрос (audio prompt), а также управлять «невербалкой»: смех, кашель, вздохи и т. д.
- Voice cloning. Клонирование голоса по короткому образцу: подгрузите аудио и его транскрипт, и модель адаптируется под заданный тембр
GitHub
Модель написана на Python (100 % кода) с использованием PyTorch 2.0 и CUDA 12.6
Производительность и требования:
Полная версия требует ≈10 GB VRAM; в будущем планируется квантование модели.
Установка и запуск:
pip install git+https://github.com/nari-labs/dia.git
git clone https://github.com/nari-labs/dia.git
cd dia
uv run app.py
# или python app.pyВ интерфейсе Gradio сразу можно оценить разницу с ElevenLabs и Sesame CSM‑1B
Лицензия: Apache 2.0.
Dia отлично подходит для ML‑исследований в TTS: вы получаете открытые весовые файлы, гибкий API для скриптов и UI для быстрой проверки гипотез.
На данный момент Dia поддерживает генерацию речи только на английском языке
▪Demo
▪Github
▪HF
@data_analysis_ml
❓ Как повысить свои навыки в аналитике данных за 90 минут?
Прийти на бесплатный практический урок 28 апреля, где мы расскажем, как эффективно работать с данными с помощью Python и Pandas: как заполнять пропуски, устранять дубликаты и правильно работать с выбросами.
👥 Кому будет полезен вебинар?
- тем, кто только начинает свой путь в Data Science и хочет освоить базовые навыки
- тем, кто работает с данными в электронных таблицах, но хочет перейти на Python и Pandas
- тем, кто сталкивался с ошибками при анализе из-за «мусора» в данных
- тем, кто планирует изучать машинное обучение (ML), где чистота данных критически важна
📍 Зарегистрируйтесь и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/iYWj/?erid=2W5zFG4k8bA
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Прийти на бесплатный практический урок 28 апреля, где мы расскажем, как эффективно работать с данными с помощью Python и Pandas: как заполнять пропуски, устранять дубликаты и правильно работать с выбросами.
👥 Кому будет полезен вебинар?
- тем, кто только начинает свой путь в Data Science и хочет освоить базовые навыки
- тем, кто работает с данными в электронных таблицах, но хочет перейти на Python и Pandas
- тем, кто сталкивался с ошибками при анализе из-за «мусора» в данных
- тем, кто планирует изучать машинное обучение (ML), где чистота данных критически важна
📍 Зарегистрируйтесь и получите скидку на большое обучение «Специализация Machine Learning»: https://otus.pw/iYWj/?erid=2W5zFG4k8bA
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Forwarded from Machinelearning
Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.
Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.
OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com
CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.
Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai
Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.
Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com
Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.
Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company
Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.
Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
📎 X-AnyLabeling — профессиональный инструмент для автоматической разметки данных с интегрированным ИИ. Он представляет собой расширенную версию популярного AnyLabeling, дополненного промышленными функциями для профессионального использования.
Проект поддерживает работу как с изображениями, так и с видеофайлами, включая сложные задачи трекинга объектов в потоковом режиме. Все благодаря встроенной интеграции с более чем 20 современными моделями компьютерного зрения, а также гибкой системе работы с форматами аннотаций, охватывающая все основные стандарты отрасли
🤖 GitHub
@data_analysis_ml
Проект поддерживает работу как с изображениями, так и с видеофайлами, включая сложные задачи трекинга объектов в потоковом режиме. Все благодаря встроенной интеграции с более чем 20 современными моделями компьютерного зрения, а также гибкой системе работы с форматами аннотаций, охватывающая все основные стандарты отрасли
🤖 GitHub
@data_analysis_ml