Forwarded from Machinelearning
Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.
Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.
Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.
Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.
Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.
В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.
Модели доступны на Hugging Face в двух вариантах:
@ai_machinelearning_big_data
#AI #ML #VLM #KimiAI #MoonShotAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 Google запускает A2A — новый протокол общения между ИИ-агентами
Google представил Agent2Agent (A2A) — открытый стандарт для обмена задачами между ИИ-агентами в разных сервисах и компаниях.
Это что-то вроде MCP, но с упором на безопасность, мультимодальность и совместимость с корпоративной инфраструктурой.
🔑 Главное:
▪ A2A — task-first: агенты обмениваются не сообщениями, а задачами с жизненным циклом (create, update, cancel, complete).
▪ Автоопределение возможностей: каждый агент публикует JSON-«визитку» с описанием своих способностей (capability discovery).
▪ HTTP, SSE, JSON-RPC — всё работает на веб-стеке, легко встраивается в существующие API.
▪ Поддержка текста, аудио и видео — мультимодальность встроена по умолчанию.
▪ Security-first: в отличие от ранних протоколов (как MCP), здесь продумана авторизация и защита данных.
В теории — это мощный инструмент для автоматизации бизнес-процессов.
На практике — уже критикуют за перегруз и неясные перспективы. Но с ресурсами Google — у проекта есть шанс стать отраслевым стандартом.
📌 Отличие между MCP и A2A:
🧠 MCP (Multi-Agent Communication Protocol) — это:
➡️ Протокол, придуманный, чтобы LLM-агенты могли "болтать" друг с другом.
💬 Основан на сообщениях — один агент пишет другому что-то вроде чата, и тот отвечает.
⚙️ Подходит для простых сценариев: «Скажи это», «Спроси у другого», «Придумай план».
Но:
– Без жёсткой структуры
– Нет встроенной безопасности
– Не поддерживает длинные сложные процессы (например, запланировать и потом отчитаться)
– Не заточен под задачи типа "запусти и следи"
🧠 A2A (Agent2Agent) — это:
➡️ Google-версия MCP, но с упором на бизнес и инфраструктуру.
📦 Вместо чатов — структурированные задачи, у которых есть статусы: created, accepted, completed, failed, cancelled.
📛 Поддерживает авторизацию, описание возможностей агента, обратную связь, долгие процессы, аудио и видео.
Проще говоря:
– MCP — это «чат между ИИ»
– A2A — это «Jira для агентов» — задачи, статусы, ролевая модель, безопасность.
google.github.io/A2A
#Google #A2A #agents #AI #protocols #interop #infrastructure
Google представил Agent2Agent (A2A) — открытый стандарт для обмена задачами между ИИ-агентами в разных сервисах и компаниях.
Это что-то вроде MCP, но с упором на безопасность, мультимодальность и совместимость с корпоративной инфраструктурой.
🔑 Главное:
▪ A2A — task-first: агенты обмениваются не сообщениями, а задачами с жизненным циклом (create, update, cancel, complete).
▪ Автоопределение возможностей: каждый агент публикует JSON-«визитку» с описанием своих способностей (capability discovery).
▪ HTTP, SSE, JSON-RPC — всё работает на веб-стеке, легко встраивается в существующие API.
▪ Поддержка текста, аудио и видео — мультимодальность встроена по умолчанию.
▪ Security-first: в отличие от ранних протоколов (как MCP), здесь продумана авторизация и защита данных.
В теории — это мощный инструмент для автоматизации бизнес-процессов.
На практике — уже критикуют за перегруз и неясные перспективы. Но с ресурсами Google — у проекта есть шанс стать отраслевым стандартом.
📌 Отличие между MCP и A2A:
🧠 MCP (Multi-Agent Communication Protocol) — это:
➡️ Протокол, придуманный, чтобы LLM-агенты могли "болтать" друг с другом.
💬 Основан на сообщениях — один агент пишет другому что-то вроде чата, и тот отвечает.
⚙️ Подходит для простых сценариев: «Скажи это», «Спроси у другого», «Придумай план».
Но:
– Без жёсткой структуры
– Нет встроенной безопасности
– Не поддерживает длинные сложные процессы (например, запланировать и потом отчитаться)
– Не заточен под задачи типа "запусти и следи"
🧠 A2A (Agent2Agent) — это:
➡️ Google-версия MCP, но с упором на бизнес и инфраструктуру.
📦 Вместо чатов — структурированные задачи, у которых есть статусы: created, accepted, completed, failed, cancelled.
📛 Поддерживает авторизацию, описание возможностей агента, обратную связь, долгие процессы, аудио и видео.
Проще говоря:
– MCP — это «чат между ИИ»
– A2A — это «Jira для агентов» — задачи, статусы, ролевая модель, безопасность.
google.github.io/A2A
#Google #A2A #agents #AI #protocols #interop #infrastructure
This media is not supported in your browser
VIEW IN TELEGRAM
reTermAI — это умный ассистент для zsh и bash, который подсказывает команды прямо в терминале на основе вашей истории.
Полезно, если часто забываешь синтаксис или хочешь ускорить работу с CLI.
🚀 Что умеет:
▪ ИИ-рекомендации команд по истории
▪ Поддержка частичного ввода
▪ Выбор LLM (можно подключить свой)
▪ Гибкая адаптация под рабочий процесс
▪ Совместим с zsh и bash
📦 Установил — и терминал стал умнее.
Отличный инструмент для девелоперов, админов и всех, кто живёт в консоли.
pip install reterm-ai
🔗 Github
#terminal #cli #bash #zsh #LLM #opensource #reTermAI #ai
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
В списке есть: Doom II и Quake до Pokemon Red и Super Mario Land и другие.
Например, при игре в Doom. Sonnet 3.7 прошёл дальше всех и даже нашёл «синюю комнату»!
Режим реального времени: агент получает только raw‑фреймы и контролирует игру «на ходу» в режиме реального времени.
VideoGameBench‑Lite: среда автоматически ставит игру на паузу, пока модель думает, чтобы убрать задержки инференса и дать время на обдуманные действия
vgbench.com
.
Единый интерфейс: абстрагируем эмуляторы (PyBoy для Game Boy, DOSBox для MS‑DOS) и предоставляем API для передачи изображений, нажатий кнопок и проверки завершения игры
vgbench.com
Open‑source: код и примеры агентов доступны на GitHub — клонируйте, форкайте и тестируйте свои LLM/VLM‑агенты!
vgbench.com
📂 Репозиторий: https://github.com/alexzhang13/videogamebench
🔗 Документация и примеры агентов: https://www.vgbench.com/
#VideoGameBench #VLM #AI #ReinforcementLearning #AIGC
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Tesla опубликовала изображения своего суперкомпьютера Dojo - системы, созданной на заказ для обучения ИИ-моделей проекта полного автономного вождения (FSD). Фото были опубликованы 17 апреля не случайно - это совпало с недавним заявлением Илона Маска о расширении крупного вычислительного кластера в Giga Texas. Dojo полностью работает на чипах, разработанных Tesla.
TeslaAI в Х (ex-Twitter)
Популярная платформа для оценки ИИ-моделей Chatbot Arena, которую используют ведущие лаборатории ИИ, официально становится компанией Arena Intelligence Inc. Это позволит команде расширить ресурсы для развития сервиса, сохранив нейтралитет тестирования. Проект, запущенный в 2023 году исследователями из UC Berkeley, давно стал ключевым инструментом для сравнения языковых моделей — его рейтинги влияют на маркетинг и развитие ИИ.
До сих пор Chatbot Arena работала на грантах и спонсорской поддержке от Kaggle, Google, Andreessen Horowitz и Together AI.
bloomberg.com
Anthropic впервые инвестировала в стартап, поддержав Goodfire. Инвестиционный раунд, возглавляемый Menlo Ventures, собрал в общей сложности 50 миллионов долларов, а Anthropic внесла 1 миллион долларов.
Goodfire специализируется на механистической интерпретации - методе, который помогает разработчикам понять, как работают системы ИИ, причем методы Goodfire считается более продвинутым, чем существующие инструменты, используемые Anthropic.
theinformation.com
Википедия представила структурированный датасет на платформе Kaggle, чтобы облегчить разработчикам ИИ доступ к данным и снизить нагрузку на свою инфраструктуру. Вместо парсинга сырого текста ботамы, теперь доступны JSON-файлы на английском и французском языках с разделами статей, краткими описаниями, инфобоксами и ссылками на изображения.
Датасет оптимизирован для ML-задач: файнтюна моделей, анализа и тестирования. Это часть стратегии Викимедии, которая не только экономит ресурсы Википедии, но и упрощает работу с контентом — вместо борьбы с ботами разработчики получают готовый инструмент.
enterprise.wikimedia.com
Deezer, французский музыкальный стриминговый сервис, сообщил, что около 18 % песен, загружаемых на его платформу, создаются ИИ. Этот показатель непрерывно растет: ежедневно на платформу загружается около 20 000 композиций, созданных искусственным интеллектом, что почти вдвое больше, чем 4 месяца назад.
Deezer внедрил инструмент обнаружения ИИ для выявления музыки, созданной с помощью Suno и Udio в январе 2025 года, когда ежедневное количество загружаемых песен, созданных ИИ, составляло около 10 000.
billboard.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Платные подписчики ChatGPT получили доступ к обновлённым моделям o3 и o4-mini в середине апреля, но пользователи быстро заметили странности: в длинных текстах появляются невидимые Unicode-символы - "Неразрывные пробелы" (U+202F). Они выглядят как обычные пробелы, но обнаруживаются через специальные инструменты.
Стартап RumiAI проанализировал ситуацию и предположил, что это попытка добавить водяные знаки для отслеживания ИИ-генерации. Однако символы легко удалить через поиск-замену, что ставит под вопрос их эффективность. Альтернативная версия — модели просто переняли форматирование из обучающих данных, где неразрывные пробелы используются для предотвращения разрывов строк.
OpenAI пока не дала никаких комментариев о причинах появления непечатных символов в результатах генерации.
winbuzzer.com
CharacterAI представила AvatarFX — систему, которая превращает изображения в говорящие, поющие и эмоционирущие видео за пару кликов. Технология сочетает фотореализм, синхронизацию движений губ, тела и рук, а также поддержку длинных роликов.
Под капотом — модифицированная архитектура DiT с flow-based диффузионными моделями, которые обучаются на разнообразных данных: от реалистичных людей до анимированных объектов. От конкурентов систему отличает работа с готовыми изображениями (не только текстовыми описаниями), поддержка нескольких говорящих в кадре и стабильность анимации.
Первыми доступ к AvatarFX получат подписчики CAI+. Остальным придется подождать или записаться в лист ожидания.
blog.character.ai
Два корейских студента без глубокого опыта в ИИ разработали Dia — модель для создания подкаст-диалогов, способную конкурировать с Google NotebookLM. Используя TPU от Google, они обучили модель на 1,6 млрд. параметров, которая позволяет настраивать тон голоса, добавлять паузы, смех и клонировать голоса.
Dia доступна на Hugging Face и GitHub, для запуска на ПК нужен GPU от 10 ГБ VRAM. В отличие от аналогов, Dia даёт пользователям контроль над сценарием: можно прописать реплики, выбрать «характер» говорящего или загрузить образец для клонирования. Короткое тестирование, проведенное редакцией TechCrunch показало, что Dia справляется с диалогами на любые темы, а качество голосов не уступает коммерческим решениям.
techcrunch.com
Physical Intelligence представила модель π0.5 — шаг к роботам, которые справляются с задачами в совершенно новых условиях. В отличие от предшественников, эта система на базе VLA обучалась на разнородных данных: от распознавания объектов до демо движений роботов. Это позволяет ей понимать не только как действовать, но и что именно делать в незнакомой среде — например, класть посуду в раковину, даже если раньше её не видела.
Модель анализирует семантику задачи, разбивает её на шаги и генерирует команды для моторных систем. π0.5 умеет реагировать и на голосовые команды разной детализации — от «убери посуду» до точечных указаний. В планах — улучшение автономного обучения и запросов помощи в сложных ситуациях.
physicalintelligence.company
Академия киноискусств официально разрешила номинировать на «Оскар» фильмы, созданные с использованием ИИ. Как заявили организаторы, технологии генеративного ИИ не станут преимуществом или препятствием при оценке. Но теперь, чтобы голосовать в финале, члены Академии обязаны посмотреть все номинированные работы — это часть новых правил.
Несмотря на прогресс, споры вокруг ИИ не утихают. Актеры и сценаристы опасаются, что алгоритмы заменят их в создании сценариев или дубляжа. Хотя некоторые студии уже внедряют ИИ, аниматоры и режиссеры сомневаются: технологии пока не способны конкурировать с эмоциональной глубиной человеческой работы.
bbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.
Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com
Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.
Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com
Anthropic представила 2 ключевых обновления для своего Claude: интеграцию сторонних сервисов и расширенный инструмент для глубокого анализа. Новая функция "Integrations" позволяет подключать Claude к бизнес-приложениям вроде Confluence, Zapier или PayPal через серверы на базе протокола MCP. Это даст ИИ доступ к данным проектов, автоматизирует задачи и улучшает контекстную работу.
Параллельно запущен Advanced Research: теперь Claude может анализировать сотни источников (включая корпоративные данные и локальные диски) за несколько минут, формируя детальные отчеты со ссылками на источники. Обновление использует «рассуждающие» модели ИИ.
Функции доступны в бета-версии для подписчиков Claude Max, Team и Enterprise, а также скоро появятся в плане Pro. Anthropic также увеличила лимиты для кодинг-инструмента Claude Code.
anthropic.com
Google начал внедрять рекламу в чаты пользователей с некоторыми сторонними ИИ-ассистентами через сеть AdSense. Функция, запущенная в этом году, уже тестировалась с стартапами Ask и Liner. Представитель компании подтвердил: «AdSense для Поиска доступен сайтам, которые хотят показывать релевантную рекламу в своих AI-диалогах».
Этот шаг выглядит попыткой монетизировать растущую популярность ИИ-чатов вроде ChatGPT или Claude, которые постепенно заменяют традиционный поиск. Ранее компания уже добавляла рекламу в ИИ-сниппеты поиска. Однако интеграция с внешними сервисами — новый этап.
bloomberg.com
Facebook-research внесли ключевые изменения в правила конфиденциальности своих умных очков Ray-Ban. С 29 апреля владельцы устройств больше не могут отключать сохранение голосовых записей в облаке — удалить их можно только вручную через настройки. По словам компании, аудио и транскрипты хранятся до года для улучшения продуктов, а случайные активации удаляются через 90 дней.
Фото и видео с камеры очков по-прежнему остаются в галерее смартфона и не используются для обучения ИИ, если не загружены в облачные сервисы компании или сторонние приложения. Однако голосовой помощник теперь всегда активен, пока пользователь не отключит его вручную. Это решение направлено на сбор данных для тренировки алгоритмов.
theverge.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.
Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.
Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.
Практическая польза протестирована в экспериментах:
Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.
Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.
Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.
В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.
Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 LTX-Video 13B — один из самых мощных open-source видеогенераторов.
Разработчики внедрили в модель мультимасштабный рендеринг.
✅ Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.
📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:
один поток отвечает за фон (низкая детализация, большой масштаб),
другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).
Потом всё объединяется в один кадр, как слои в Photoshop.
🎯 Зачем это нужно?
Фон остаётся стабильным, не "дергается"
Движущиеся объекты остаются чёткими и отдельными от фона
Картинка в целом не разваливается (нет смешивания движений, артефактов)
Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.
👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.
Что нового?
– Модель 13 миллиардов параметров
– Multiscale rendering → больше деталей, чётче текстуры
– Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций
Запускается даже на RTX 4090.
#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration
▪Попробовать можно тут→ https://app.ltx.studio/ltx-video
▪Code → https://github.com/Lightricks/LTX-Video
▪Weights → https://huggingface.co/Lightricks/LTX-Video
Разработчики внедрили в модель мультимасштабный рендеринг.
✅ Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.
📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:
один поток отвечает за фон (низкая детализация, большой масштаб),
другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).
Потом всё объединяется в один кадр, как слои в Photoshop.
🎯 Зачем это нужно?
Фон остаётся стабильным, не "дергается"
Движущиеся объекты остаются чёткими и отдельными от фона
Картинка в целом не разваливается (нет смешивания движений, артефактов)
Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.
👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.
Что нового?
– Модель 13 миллиардов параметров
– Multiscale rendering → больше деталей, чётче текстуры
– Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций
Запускается даже на RTX 4090.
#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration
▪Попробовать можно тут→ https://app.ltx.studio/ltx-video
▪Code → https://github.com/Lightricks/LTX-Video
▪Weights → https://huggingface.co/Lightricks/LTX-Video
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
NVIDIA отправит более 18 000 флагманских Blackwell GB300 в саудовскую компанию-стартап Humain, заявил CEO Джeнсeн Хуанг на инвестиционном форуме в Эр-Рияде. Эти чипы, одни из самых мощных в мире, будут работать в дата-центрах суммарной мощностью 500 мегаватт, помогая строить ИИ-инфраструктуру страны.
Humain, принадлежащая местному суверенному фонду, позже задействует «сотни тысяч» GPU. AMD тоже участвует в проекте, и тоже поставит свои чипы для аналогичной инфраструктуры на $10 млрд.
cnbc.com
Audible объявил о внедрении полного цикла производства аудиокниг на основе ИИ — от перевода до озвучки. В ближайшие месяцы сервис предложит более 100 синтезированных голосов на английском, испанском, французском и итальянском языках с акцентами и диалектами.
Технология поддерживает два варианта перевода: текст-текст (с последующей озвучкой) и речь-речь, сохраняющую стиль оригинального чтеца. Для точности перевода доступна проверка профессиональными лингвистами. Первые тесты перевода стартуют этой осенью.
thebookseller.com
Tencent запустил CodeBuddy, инструмент, который может стать конкурентом Cursor. Он поддерживает автодополнение кода, диагностику ошибок, рефакторинг, написание тестов и ревью, а также работает с экосистемой WeChat.
Особенность сервиса - режим Craft: ИИ понимает задачи на естественном языке и генерирует проекты из нескольких файлов. CodeBuddy поддерживает MCP-протокол, позволяя интегрировать сторонние инструменты без лишних телодвижений. В основе — модели DeepSeek V3 и HunYuan Turbo S, доступные бесплатно. Инструмент совместим с VSCode, Jetbrains и другими IDE.
copilot.tencent.com
Портал videocardz поделился слухами о том, что один из партнеров Intel разрабатывает двухчиповую версию видеокарты Arc B580 с суммарными 48 ГБ видеопамяти. По данным неназванного источника, устройство получит нестандартный дизайн, а его анонс запланирован на ближайшую неделю. Хотя точный бренд пока не называется, известно, что проект не является официальной разработкой Intel и находится под NDA.
При этом, обычная версия B580 с 24 ГБ задерживается на несколько месяцев и есть вероятность, что это связано с "мистической" 48 ГБ-версией. Если информация подтвердится, это станет редким случаем десктопного двухчипового решения в эпоху монопольных GPU. Ждем подробностей на Computex.
videocardz.com
Системный промпт Claude, описывающий поведение модели и ее инструменты, слили в сеть — 16,7 тыс. слов и 24 тыс. токенов. Документ раскрывает детали от формата ответов до методов решения задач, например, как считать буквы в слове «strawberry». В сравнении с 2,2 тыс. словами у OpenAI он гигантский. Большая часть текста посвящена интеграции с MCP-сервером, поисковыми правилами и «горячими исправлениями» для данных после 2024 года.
Andrej Karpathy назвал утечку поводом обсудить новую парадигму обучения ИИ: вместо тонкой настройки весов модели он предложил редактировать промпты вручную, как человек использует заметки. Это должно помочь ИИ запоминать стратегии и адаптироваться к контексту. Однако критики возражают: автономные подсказки могут запутать модель, а без постоянного обучения эффект будет краткосрочным.
news.ycombinator.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Skywork.ai — первый в мире AI-офис с глубоким исследованием (DeepResearch)
Стартап Skywork.ai запустился глобально и представил уникальное решение — интеллектуальную рабочую среду, в которую встроены «суперагенты» на базе AI. Они умеют проводить глубокий анализ данных и создавать документы, таблицы, презентации и даже подкасты — буквально по одному запросу.
🔍 Что такое Skywork.ai:
📄 Docs — пишет отчёты, статьи и обзоры, подкреплённые фактами и источниками
📊 Sheets — строит таблицы, графики и проводит анализ данных
📽️ Slides — делает готовые презентации с дизайном
🌐 Webpages & Podcasts — создаёт веб-контент и аудио на основе анализа
🧠 General — универсальный агент: понимает тексты, изображения, видео и музыку
🧠 Главное отличие — DeepResearch
Это не просто генерация текста. Skywork.ai:
- Понимает контекст
- Уточняет, что вы хотите (с помощью формы Clarification Card)
- Показывает источники информации прямо в тексте
- Делает выводы на основе проверенных данных
🎯 Преимущества:
✅ Создаёт отчёты и презентации за минуты
✅ Все факты подтверждены источниками
✅ Можно экспортировать в PDF, Excel, PowerPoint
✅ Работает с текстом, таблицами, аудио, видео
✅ Подходит для аналитиков, маркетологов, исследователей, авторов
💸 Цена — от $19.99 в месяц. Уже доступно по всему миру, без инвайтов.
📌 Попробовать просто:
1. Зарегистрируйтесь на [skywork.ai](https://skywork.ai)
2. Введите свой запрос (например: «Сделай отчёт по рынку генеративного ИИ»)
3. Уточните цели через форму Clarification Card
4. Получите готовый документ, графики или презентацию
Skywork Super Agents доступен как онлайн сервис (стоимость от $20/мес., есть пробный период), а для разработчиков открыли исходники фреймворка DeepResearch и API для вызова агентов по выбору.
globenewswire.com
#AI #SkyworkAI #DeepResearch #productivity #документы #презентации #таблицы
Стартап Skywork.ai запустился глобально и представил уникальное решение — интеллектуальную рабочую среду, в которую встроены «суперагенты» на базе AI. Они умеют проводить глубокий анализ данных и создавать документы, таблицы, презентации и даже подкасты — буквально по одному запросу.
🔍 Что такое Skywork.ai:
📄 Docs — пишет отчёты, статьи и обзоры, подкреплённые фактами и источниками
📊 Sheets — строит таблицы, графики и проводит анализ данных
📽️ Slides — делает готовые презентации с дизайном
🌐 Webpages & Podcasts — создаёт веб-контент и аудио на основе анализа
🧠 General — универсальный агент: понимает тексты, изображения, видео и музыку
🧠 Главное отличие — DeepResearch
Это не просто генерация текста. Skywork.ai:
- Понимает контекст
- Уточняет, что вы хотите (с помощью формы Clarification Card)
- Показывает источники информации прямо в тексте
- Делает выводы на основе проверенных данных
🎯 Преимущества:
✅ Создаёт отчёты и презентации за минуты
✅ Все факты подтверждены источниками
✅ Можно экспортировать в PDF, Excel, PowerPoint
✅ Работает с текстом, таблицами, аудио, видео
✅ Подходит для аналитиков, маркетологов, исследователей, авторов
💸 Цена — от $19.99 в месяц. Уже доступно по всему миру, без инвайтов.
📌 Попробовать просто:
1. Зарегистрируйтесь на [skywork.ai](https://skywork.ai)
2. Введите свой запрос (например: «Сделай отчёт по рынку генеративного ИИ»)
3. Уточните цели через форму Clarification Card
4. Получите готовый документ, графики или презентацию
Skywork Super Agents доступен как онлайн сервис (стоимость от $20/мес., есть пробный период), а для разработчиков открыли исходники фреймворка DeepResearch и API для вызова агентов по выбору.
globenewswire.com
#AI #SkyworkAI #DeepResearch #productivity #документы #презентации #таблицы
Forwarded from Machinelearning
Вслед за релизом Hunyuan Portrait, Tencent выпустила Hunyuan Video Avatar - систему на базе MM-DiT для генерации динамичных видео из изображения с одним или несколькими персонажами, синхронизированных с аудио.
Объединить такие возможности было непростой задачей, это стало возможным благодаря использованию ключевых для Hunyuan Video Avatar методов:
По сравнительных тестах с Sonic, EchoMimic, EchoMimicV2 и Hallo-3 на датасетах для портретной анимации (HDTF, CelebV-HQ и свой приватный сет) Hunyuan Video Avatar показал лучшие результаты: 3,99 в метриках качества видео (IQA), 2,54 по эстетике (ASE), 5,30 в синхронизации аудио и видео (Sync-C), 38.01 в точности воспроизведения видео (FID) и 358.71 по искажениям (FVD).
При тестировании полнокадровой анимации на собственном датасете HunyuanVideo-Avatar показал лучшие результаты по IQA (4.66), ASE (3.03) и Sync-C (5.56) в сравнении с Hallo3, FantasyTalking и OmniHuman-1.
⚠️ Модель прожорливая: минимум 24 ГБ VRAM для 704x768, а для плавного 4K рекомендуют GPU на 96 ГБ.
Зато входные изображения берет любые: фотореалистичные портреты, 3D-модели, аниме-персонажи — хоть лису в костюме. Разрешение тоже гибкое: от крупных планов до полноростовых.
@ai_machinelearning_big_data
#AI #ML #HunyuanAvatar
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 best-of-robot-simulators: крупнейший рейтинг симуляторов для робототехники
Проект — это автоматизированная и регулярно обновляемая подборка лучших симуляторов для робототехники на GitHub. Это must-have для всех, кто работает с моделированием и тестированием роботов в виртуальной среде.
🧩 Что внутри:
● 120+ симуляторов в 10 категориях
● Более 300 000 звёзд в сумме
● Автоматическая сортировка по GitHub-метрикам: звёзды, форки, активность
● Обновляется каждую среду
📂 Категории симуляторов:
• Generic Robotics
• Aerial (дроны)
• Maritime (морская робототехника)
• Space
• Domain Specific
• Game engines
• AI-training
• Rendering
• Physics engines
• 2D Simulators
🔍 Примеры известных фреймворков:
• Gazebo, Webots, Isaac Sim, MuJoCo, AirSim, PyBullet
🛠 Полезно для:
• Разработчиков и исследователей
• Студентов робототехники
• Команд, выбирающих движок под проект
• Энтузиастов AI/симуляции
📎 Лицензия: CC-BY-SA 4.0
🌐 Репозиторий
#robotics #AI #simulation #opensource #gazebo #webots #isaacsim #mujoco
Проект — это автоматизированная и регулярно обновляемая подборка лучших симуляторов для робототехники на GitHub. Это must-have для всех, кто работает с моделированием и тестированием роботов в виртуальной среде.
🧩 Что внутри:
● 120+ симуляторов в 10 категориях
● Более 300 000 звёзд в сумме
● Автоматическая сортировка по GitHub-метрикам: звёзды, форки, активность
● Обновляется каждую среду
📂 Категории симуляторов:
• Generic Robotics
• Aerial (дроны)
• Maritime (морская робототехника)
• Space
• Domain Specific
• Game engines
• AI-training
• Rendering
• Physics engines
• 2D Simulators
🔍 Примеры известных фреймворков:
• Gazebo, Webots, Isaac Sim, MuJoCo, AirSim, PyBullet
🛠 Полезно для:
• Разработчиков и исследователей
• Студентов робототехники
• Команд, выбирающих движок под проект
• Энтузиастов AI/симуляции
📎 Лицензия: CC-BY-SA 4.0
🌐 Репозиторий
#robotics #AI #simulation #opensource #gazebo #webots #isaacsim #mujoco
MCP (Model Context Protocol) меняет то, как ИИ-модели и агенты взаимодействуют с инструментами.
1. Agentset MCP
🔗 https://github.com/agentset-ai/mcp-server
Быстрое создание интеллектуальных приложений на основе документов (RAG) с open-source платформой Agentset.
2. GitHub MCP Server
🔗 https://github.com/github/github-mcp-server
Интеграция с API GitHub — можно строить ИИ-инструменты, работающие с экосистемой GitHub.
3. arXiv MCP
🔗 https://github.com/andybrandt/mcp-simple-arxiv
Работа с научными статьями arXiv: поиск, метаданные, аннотации, ссылки — всё через MCP.
4. MCP Run Python
🔗 https://github.com/pydantic/pydantic-ai/tree/main/mcp-run-python
Запуск Python-кода в песочнице через Pyodide (Deno). Полная изоляция от ОС.
5. Safe Local Python Executor
🔗 https://github.com/maxim-saplin/mcp_safe_local_python_executor
Безопасный локальный запуск Python-кода, сгенерированного LLM, через LocalPythonExecutor (от smolagents).
6. Cursor MCP Installer
🔗 https://github.com/matthewdcage/cursor-mcp-installer
Автоматическое добавление MCP-серверов в редактор Cursor — удобно для разработчиков.
7. Basic Memory
🔗 https://memory.basicmachines.co/docs/introduction
Система управления знаниями: создаёт устойчивый семантический граф из диалогов ИИ-агентов.
8. Filesystem MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/HEAD/src/filesystem
Чтение, запись, поиск файлов, создание, удаление и перемещение директорий — всё через MCP.
9. Notion MCP Server
🔗 https://github.com/makenotion/notion-mcp-server
Позволяет моделям управлять вашим рабочим пространством в Notion: поиск, чтение, создание и обновление страниц и баз.
10. Markdownify MCP Server
🔗 https://github.com/zcaceres/markdownify-mcp
Конвертирует PDF, изображения, аудио и веб-страницы в Markdown.
11. Fetch MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
Позволяет LLM извлекать данные с веб-страниц и автоматически преобразовывать HTML в Markdown.
12. Mobile Next MCP Server
🔗 https://github.com/mobile-next/mobile-mcp
Взаимодействие с iOS/Android-приложениями: распознавание UI по скриншотам, автоматизация кликов.
13. MCP Installer
🔗 https://github.com/anaisbetts/mcp-installer
Шутливо, но по делу: «MCP для установки MCP». Модель сама ставит MCP-серверы из npm и PyPi по вашему запросу.
🧠 Вывод:
MCP-серверы — это мост между LLM и реальными действиями: код, браузер, мобильные приложения, знания, GitHub, файлы.
Их можно комбинировать в цепочки, расширять ассистентов, строить автономные агенты.
@data_analysis_ml
#ml #ai #MCP
Please open Telegram to view this post
VIEW IN TELEGRAM
🎥 Video-XL-2 — модель для понимании длинных видео
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
Forwarded from Machine learning Interview
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
✔️ Подробнее
@machinelearning_interview
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
notebook.ipynb
в свой репозиторий модели — и Hugging Face автоматически подхватит его. Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 MiniCPM4 — компактная LLM нового поколения
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.
📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями
И всё это — с усложнением.
💥 Результаты:
— 🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.
— 🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.
— 🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.
— 🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.
— 🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.
🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков
Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:
📏 Немного математики:
• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов
🧱 Лимиты моделей:
| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13
И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.
🔍 Что реально происходит:
• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*
• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений
🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются
🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔
📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
@data_analysis_ml
#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Magistral — первая модель рассуждений от Mistral AI. Она сочетает глубокую логическую обработку с возможностью отслеживать каждый шаг её «мышления».
Модель получила поддержку 8 языков, включая русский и выпущена в 2 вариантах:
Внутри Magistral работает в режиме рассуждений, разбивая задачи на цепочки логических шагов, а Flash Answers ускоряет вывод в 10 раз по сравнению с конкурентами. Для интеграции в рабочие процессы модель умеет взаимодействовать с внешними инструментами (API или базами данных).
В тестах Magistral Medium показал 73,6% точности на задачах AIME2024, демонстрируя силу в физических симуляциях и математических расчетах.
Для разработчиков доступны версии на Hugging Face, AWS и IBM WatsonX, а в будущем — на Azure и Google Cloud. Демо Magistral доступно в интерфейсе Le Chat или по API в La Plateforme.
@ai_machinelearning_big_data
#AI #ML #LLM #Magistral #MistralAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — бесплатно и без ограничений для всех.
💬 Работает супер быстро прямо в чате.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus
💬 Работает супер быстро прямо в чате.
🚀 Так же доступен Agent Mode с расширенными возможностями.
От простых вопросов до сложных задач — всё в одном окне : https://manus.im/
@ai_machinelearning_big_data
#news #ai #ml #manus