Forwarded from Machinelearning
Институт технологических инноваций Абу-Даби представил семейство моделей Falcon 3 с расширенными возможностями в областях науки, математики и программирования.
Модели Falcon 3 основаны на трансформерах, совместимы с архитектурой Llama поддерживает до 32К токенов контекста (кроме 1B с контекстом 8К). Все модели используют функцию активации SwiGLU с размером словаря 131K токенов (65K для Mamba-7B версии).
Falcon3-7B-Base была масштабирована до 10 млрд. параметров путем дублирования избыточных слоев и последующего обучения на 2 трлн. токенов. Это позволило модели Falcon3-10B-Base достичь высоких результатов в задачах zero-shot и few-shot среди моделей с менее чем 13В параметров.
Для создания компактных моделей Falcon3-1B Base и Falcon3-3B Base использовались методы обрезки и дистилляции знаний на основе около 100 ГБ высококачественных данных.
Модель Falcon3-Mamba-7B-Base была усовершенствована путем обучения на дополнительных 1,5 трлн. токенов, что привело к созданию Falcon3-Mamba-7B-Base с улучшенными способностями к рассуждению и в математических задачах.
В бенчмарках задач математики Falcon3-10B-Base достигает 22,9 на MATH-Lvl5 и 83,0 на GSM8K, а в задачах программирования набирает 73,8 на MBPP.
Инструктивные версии моделей также показывают высокие результаты, при этом Falcon3-7B-Instruct и Falcon3-10B-Instruct превосходят аналогичные модели до 13 млрд. параметров.
⚠️ В январе 2025 года планируется выпуск моделей семейства Falcon3 с расширенными мультимодальными возможностями: поддержка изображений, видео и аудио, а также полный технический отчет с описанием методик.
@ai_machinelearning_big_data
#AI #ML #LLM #Falcon3
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Большая подборка интересных статей, посвященных LLM.
-The GPT-4 barrier was comprehensively broken
- Some of those GPT-4 models run on my laptop
- LLM prices crashed, thanks to competition and increased efficiency
- Multimodal vision is common, audio and video are starting to emerge
- Voice and live camera mode are science fiction come to life
-Prompt driven app generation is a commodity already
- Universal access to the best models lasted for just a few short months
- Agents” still haven’t really happened yet
- Evals really matter
- Apple Intelligence is bad, Apple’s MLX library is excellent
- The rise of inference-scaling “reasoning” models
- Was the best currently available LLM trained in China for less than $6m?
- The environmental impact got better
- The environmental impact got much, much worse
- The year of slop
- Synthetic training data works great
- LLMs somehow got even harder to use
- Knowledge is incredibly unevenly distributed
- LLMs need better criticism
⚡️ Полный обзор
@data_analysis_ml
-The GPT-4 barrier was comprehensively broken
- Some of those GPT-4 models run on my laptop
- LLM prices crashed, thanks to competition and increased efficiency
- Multimodal vision is common, audio and video are starting to emerge
- Voice and live camera mode are science fiction come to life
-Prompt driven app generation is a commodity already
- Universal access to the best models lasted for just a few short months
- Agents” still haven’t really happened yet
- Evals really matter
- Apple Intelligence is bad, Apple’s MLX library is excellent
- The rise of inference-scaling “reasoning” models
- Was the best currently available LLM trained in China for less than $6m?
- The environmental impact got better
- The environmental impact got much, much worse
- The year of slop
- Synthetic training data works great
- LLMs somehow got even harder to use
- Knowledge is incredibly unevenly distributed
- LLMs need better criticism
⚡️ Полный обзор
@data_analysis_ml
Forwarded from Machinelearning
🔥 Microsoft только что выпустила Phi-4 LLM, обученный на 9,4 триллионах токенов.
Лицензия MIT!
🤗 HF: https://huggingface.co/microsoft/phi-4
🧠 Demo: https://huggingface.co/spaces/Tonic/Phi-4
@ai_machinelearning_big_data
#phi4 #llm #Microsoft
Лицензия MIT!
🤗 HF: https://huggingface.co/microsoft/phi-4
@ai_machinelearning_big_data
#phi4 #llm #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Mistral выпустила новую модель, специально разработанную для по Кодина с ИИ.
Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥
Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.
Размер окна контекста увеличен до 256 тысяч токенов.
Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.
А если вам нужна дополнительная информация, то вот официальный блог Mistral.
https://mistral.ai/news/codestral-2501/
@data_analysis_ml
#mistral #llm #ml
Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥
Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.
Размер окна контекста увеличен до 256 тысяч токенов.
Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.
А если вам нужна дополнительная информация, то вот официальный блог Mistral.
https://mistral.ai/news/codestral-2501/
@data_analysis_ml
#mistral #llm #ml
💡Transformer^2: Самоадаптирующиеся LLM
Вводит новую структуру самоадаптации, которая адаптирует LLM для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты их весовых матриц.
Во время вывода использует систему диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀
https://huggingface.co/papers/2501.06252
@data_analysis_ml
#transformers2 #llm #paper #ml
Вводит новую структуру самоадаптации, которая адаптирует LLM для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты их весовых матриц.
Во время вывода использует систему диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀
https://huggingface.co/papers/2501.06252
@data_analysis_ml
#transformers2 #llm #paper #ml
🌟Вышела InternLM v3!
- Производительность SoTA, превосходит такие модели, как Llama3.1-8B и Qwen2.5-7B
- Способность к глубоким рассуждениям с использованием системных промптов (подробности в карточке модели)
- Модель обучалась только на токенах высокого качества 4T.
https://huggingface.co/collections/internlm/internlm3-67875827c377690c01a9131d
@data_analysis_ml
#llm #reasoning #ml
- Производительность SoTA, превосходит такие модели, как Llama3.1-8B и Qwen2.5-7B
- Способность к глубоким рассуждениям с использованием системных промптов (подробности в карточке модели)
- Модель обучалась только на токенах высокого качества 4T.
https://huggingface.co/collections/internlm/internlm3-67875827c377690c01a9131d
@data_analysis_ml
#llm #reasoning #ml
⭐️ Mistral AI только что выпустили Small 3!
Вот все, что вам нужно знать:
- Доступны как предварительно обученные, так и настроенные контрольные точки
- без RL и без синтетических данных
- Mistral Small 3 оптимизирован по задержке
- 24B параметров
- 81% точности на MMLU и задержка 150 токенов/с
- Позиционируется как замена GPT-40-mini
- Конкурирует с Llama 3.3 70B и Qwen 32B
- в 3 раза быстрее, чем инструкция Llama 3.3 70B
- Лицензия Apache 2.0
- Доступно в la Plateforme, HF и других провайдерах
Варианты использования включают в себя быстродействующих речевых помощников, вызов функций с малой задержкой, тонкую настройку экспертных моделей и локальный вывод.
Великолепная маленькая модель, которая дополняет другие более крупные модели, такие как DeepSeek-R1.
https://mistral.ai/news/mistral-small-3/
#mistral #llm #ml #ai
Вот все, что вам нужно знать:
- Доступны как предварительно обученные, так и настроенные контрольные точки
- без RL и без синтетических данных
- Mistral Small 3 оптимизирован по задержке
- 24B параметров
- 81% точности на MMLU и задержка 150 токенов/с
- Позиционируется как замена GPT-40-mini
- Конкурирует с Llama 3.3 70B и Qwen 32B
- в 3 раза быстрее, чем инструкция Llama 3.3 70B
- Лицензия Apache 2.0
- Доступно в la Plateforme, HF и других провайдерах
Варианты использования включают в себя быстродействующих речевых помощников, вызов функций с малой задержкой, тонкую настройку экспертных моделей и локальный вывод.
Великолепная маленькая модель, которая дополняет другие более крупные модели, такие как DeepSeek-R1.
https://mistral.ai/news/mistral-small-3/
#mistral #llm #ml #ai
Forwarded from Machinelearning
🐋 DeepClaude
Высокопроизводительный LLM-интерфейс, который позволяет использовать возможности рассуждений DeepSeek R1 и творческие способности Claude с помощью единого и простого API и удобного иинтерфейса.
Особенности
🚀 Нулевая задержка - Очень быстрые ответы на базе высокопроизводительного API, написанного на Rust.
⚙️ Гибкая настройка соответствии с вашими потребностями
🌟 Открытый исходный код
🤖 Двойная мощь ИИ - объедините рассуждения DeepSeek R1 с и возможностями Claude
⭐️ DeepClaude объединяет обе модели, чтобы обеспечить:
- Новая SOTA 64,0% на бенчмарке aider polyglot
- 14-кратное снижение затрат по сравнению с предыдущей SOTA
- Повышенную точность генерации кода для различных языков программирования
▪ Github
▪Docs
@ai_machinelearning_big_data
#DeepSeek #Claude #llm #ml #ai #DeepClaude #opensource
Высокопроизводительный LLM-интерфейс, который позволяет использовать возможности рассуждений DeepSeek R1 и творческие способности Claude с помощью единого и простого API и удобного иинтерфейса.
Особенности
🚀 Нулевая задержка - Очень быстрые ответы на базе высокопроизводительного API, написанного на Rust.
⚙️ Гибкая настройка соответствии с вашими потребностями
🌟 Открытый исходный код
🤖 Двойная мощь ИИ - объедините рассуждения DeepSeek R1 с и возможностями Claude
- Новая SOTA 64,0% на бенчмарке aider polyglot
- 14-кратное снижение затрат по сравнению с предыдущей SOTA
- Повышенную точность генерации кода для различных языков программирования
git clone https://github.com/getasterisk/deepclaude.git
cd deepclaude
▪ Github
▪Docs
@ai_machinelearning_big_data
#DeepSeek #Claude #llm #ml #ai #DeepClaude #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Экспериментальная архитектура LLM, которая способна масштабировать вычисления за счет скрытых рассуждений в латентном пространстве путем итеративного применения рекуррентного блока, что дает возможность развернуть вычисления на произвольную глубину.
Этот метод отличается от традиционных, которые увеличивают вычислительные ресурсы за счет генерации большего количества токенов. Например, в отличие от CoT, предложенный подход не требует специализированных датасетов, работает с небольшими окнами контекста и способен захватывать типы рассуждений, которые сложно выразить словами. В дополнение, модели этой архитектуры требуют меньше памяти для обучения и инференса.
Тестовая модель Huginn-3.5B получила 3.5 млрд параметров и была обучена на 800 млрд. токенов (веб-страницы, научные публикации и программный код) с использованием случайного числа итераций рекуррентного блока для каждой входной последовательности. Чтобы сократить потребление памяти использовалось усеченное обратное распространение, при котором градиенты вычисляются только для последних итераций.
Модель состоит из 3 основных блоков: прелюдии, рекуррентного блока и коды. Прелюдия преобразует входные данные в латентное пространство, рекуррентный блок выполняет итеративные вычисления, а кода преобразует латентное состояние обратно в вероятности токенов. Рекуррентный блок может быть повторен произвольное количество раз, позволяя модели выполнять произвольное количество вычислений перед генерацией токена.
Результаты проведенных тестов на стандартных задачах ARC, HellaSwag, MMLU свидетельствуют, что Huginn-3.5B превосходит традиционные модели на задачах, требующих сложных рассуждений (математические задачи и программирование). Например, на задачах GSM8k и MATH модель показала значительное улучшение производительности при увеличении числа рекуррентных итераций.
⚠️ Модель не подвергалась файнтюну или посттренингу, но благодаря включению instruct-данных во время претрейна, она изначально понимает свой шаблон чата.
⚠️ Чекпоинт на HF обучался всего на 47000 шагах и является академическим проектом.
# Load the model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/huginn-0125", torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/huginn-0125")
# Modifying the Model's Depth at Test Time
input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
model.eval()
model.to(device)
model(input_ids, num_steps=32)
# Model can be used like a normal HF model
# You can provide `num_steps` directly to the `generate` call
model.eval()
config = GenerationConfig(max_length=256, stop_strings=["<|end_text|>", "<|end_turn|>"],
use_cache=True,
do_sample=False, temperature=None, top_k=None, top_p=None, min_p=None,
return_dict_in_generate=True,
eos_token_id=65505,bos_token_id=65504,pad_token_id=65509)
input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
outputs = model.generate(input_ids, config, tokenizer=tokenizer, num_steps=16)
@ai_machinelearning_big_data
#AI #ML #LLM #LatentReasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
✔ Auto Deep Research — это мощный AI-ассистент для исследователей и разработчиков.
Ключевые особенности:
- Экономичность и открытый исходный код: Забудьте о дорогих подписках! Auto Deep Research предлагает доступную альтернативу с оплатой по мере использования, сохраняя высокую производительность. Как открытое решение, оно обеспечивает прозрачность и развитие сообщества.
- Высокая производительность: Система демонстрирует результаты, сопоставимые с OpenAI Deep Research, занимая лидирующие позиции в GAIA Benchmark среди open-source решений.
- Простота использования: Система развертывания в один клик позволяет мгновенно запускать передовые исследовательские возможности без сложных настроек.
- Универсальная совместимость: Поддержка интеграции с различными большими языковыми моделями (OpenAI, Anthropic, Deepseek и другие) и гибкие режимы взаимодействия с функциями и без них.
▪GitHub
#agent #llm #ai
Ключевые особенности:
- Экономичность и открытый исходный код: Забудьте о дорогих подписках! Auto Deep Research предлагает доступную альтернативу с оплатой по мере использования, сохраняя высокую производительность. Как открытое решение, оно обеспечивает прозрачность и развитие сообщества.
- Высокая производительность: Система демонстрирует результаты, сопоставимые с OpenAI Deep Research, занимая лидирующие позиции в GAIA Benchmark среди open-source решений.
- Простота использования: Система развертывания в один клик позволяет мгновенно запускать передовые исследовательские возможности без сложных настроек.
- Универсальная совместимость: Поддержка интеграции с различными большими языковыми моделями (OpenAI, Anthropic, Deepseek и другие) и гибкие режимы взаимодействия с функциями и без них.
▪GitHub
#agent #llm #ai
Forwarded from Machinelearning
Mistral только что выпустили многоязычный, мультимодальный 24B LLM с производительностью SOTA с контекстом 128K и лицензией Apache 2.0 🔥
🟡 HF: https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503
🟡 Post: https://mistral.ai/news/mistral-small-3-1/
@ai_machinelearning_big_data
#mistral #llm #mistralsmall
@ai_machinelearning_big_data
#mistral #llm #mistralsmall
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Мы уже писали про довольно интересное семейство моделей от LG, на этот раз они представили по-настоящему мощные ризонинг модели.
1) EXAONE Deep 2.4B превосходит другие модели сопоставимого размера,
2) EXAONE Deep 7.8B превосходит не только открытые модели сопоставимого размера, но и OpenAI o1-mini,
3) EXAONE Deep 32B демонстрирует конкурентоспособные характеристики по сравнению с ведущими открытым моделями.
Модель 32B, которая по размеру равна примерно 5% от размера DeepSeek r1, превосходит ее почти на всех бенчмарках.
Прорыв в цепочке рассуждений – релиз акцентирует внимание на улучшении "chain-of-thought" механизма, что делает модель способной генерировать обоснованные выводы и поддерживать длинные цепочки логических рассуждений.
@ai_machinelearning_big_data
#AI #ML #LLM #EXAONE #LG #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.
Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.
Модель выдает более подробные и структурированный ответы.
💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.
📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.
🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.
Еще один крутой релиз понедельника!
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
@ai_machinelearning_big_data
#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
DeepSeek-AI и Университет Цинхуа опубликовали исследование о методе Self-Principled Critique Tuning (SPCT), который значительно повышает эффективность генеративных моделей вознаграждения (GRM) для больших языковых моделей. SPCT решает ключевую проблему RL-обучения — получение точных сигналов вознаграждения в условиях разных и неоднозначных задач, где нет четких правил или эталонов.
SPCT — это комбинация rejective fine-tuning и обучения с подкреплением на основе правил. Rejective fine-tuning учит модель генерировать принципы и критические оценки, адаптируясь к разным типам входных данных, а rule-based RL — оптимизирует процесс через систему поощрений, которая штрафует за ошибки в ранжировании ответов.
Это позволяет GRM самостоятельно создавать критерии оценки и точнее определять лучшие ответы в сложных сценариях, например, при работе с математическими задачами или этическими дилеммами.
Главное преимущество SPCT — масштабируемость инференса. Вместо увеличения размера модели авторы предлагают параллельно генерировать множество вариантов принципов и оценок, а затем агрегировать их через голосование. Чтобы фильтровать «шумные» варианты используется мета-модель вознаграждения, которая отбирает только качественные сэмплы.
По результатам тестов, DeepSeek-GRM с 27 млрд. параметров при 32 параллельных сэмплах превзошла 671B модель, демонстрируя, что вычислительные ресурсы можно эффективно распределять во время инференса, а не обучения.
Эксперименты на бенчмарках Reward Bench, PPE и RMB показали, что SPCT снижает предвзятость моделей. Например, в задачах на рассуждение точность выросла на 12%, а в оценке безопасности — на 9%. При этом метод сохраняет гибкость: одна и та же модель может оценивать одиночные ответы, пары или целые наборы, что критично для реальных приложений вроде чат-ботов или автономных систем.
К сожалению, идеальных решений не бывает и у метода есть существенное ограничение - GRM требуют больше вычислительных ресурсов, чем классические скалярные модели, а в узкоспециализированных областях (например, верификация кода) их точность пока уступает конкурентам.
@ai_machinelearning_big_data
#AI #ML #LLM #GRM #DeepSeekAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
reTermAI — это умный ассистент для zsh и bash, который подсказывает команды прямо в терминале на основе вашей истории.
Полезно, если часто забываешь синтаксис или хочешь ускорить работу с CLI.
🚀 Что умеет:
▪ ИИ-рекомендации команд по истории
▪ Поддержка частичного ввода
▪ Выбор LLM (можно подключить свой)
▪ Гибкая адаптация под рабочий процесс
▪ Совместим с zsh и bash
📦 Установил — и терминал стал умнее.
Отличный инструмент для девелоперов, админов и всех, кто живёт в консоли.
pip install reterm-ai
🔗 Github
#terminal #cli #bash #zsh #LLM #opensource #reTermAI #ai
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.
Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.
Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.
Практическая польза протестирована в экспериментах:
Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.
Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.
Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.
В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.
Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
🎥 Video-XL-2 — модель для понимании длинных видео
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
🚀 MiniCPM4 — компактная LLM нового поколения
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.
📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями
И всё это — с усложнением.
💥 Результаты:
— 🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.
— 🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.
— 🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.
— 🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.
— 🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.
🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков
Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:
📏 Немного математики:
• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов
🧱 Лимиты моделей:
| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13
И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.
🔍 Что реально происходит:
• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*
• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений
🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются
🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔
📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
@data_analysis_ml
#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Magistral — первая модель рассуждений от Mistral AI. Она сочетает глубокую логическую обработку с возможностью отслеживать каждый шаг её «мышления».
Модель получила поддержку 8 языков, включая русский и выпущена в 2 вариантах:
Внутри Magistral работает в режиме рассуждений, разбивая задачи на цепочки логических шагов, а Flash Answers ускоряет вывод в 10 раз по сравнению с конкурентами. Для интеграции в рабочие процессы модель умеет взаимодействовать с внешними инструментами (API или базами данных).
В тестах Magistral Medium показал 73,6% точности на задачах AIME2024, демонстрируя силу в физических симуляциях и математических расчетах.
Для разработчиков доступны версии на Hugging Face, AWS и IBM WatsonX, а в будущем — на Azure и Google Cloud. Демо Magistral доступно в интерфейсе Le Chat или по API в La Plateforme.
@ai_machinelearning_big_data
#AI #ML #LLM #Magistral #MistralAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM