На Huffingface пользователь bartowski опубликовал несколько квантизированных версий с разной степенью сжатия,
Размерность моделей: от IQ2_XS (10.3 Gb) до Q8_0_L (37.4GB), рекомендуемая — Q6_K.
Семейство Dolfin основано на моделях Yi и распространяется по лицензии Аpache 2.0
Dolphin-2.9.3 обладает разнообразными навыками следования инструкциям, общения и программирования. Она также имеет начальные агентные способности и поддерживает вызов функций.
Модель не имеет цензуры. Создатели отфильтровали набор данных, чтобы удалить выравнивание и предвзятость. Dolphin обучался на данных, полученных из GPT4, среди других моделей.
🤗 Hugging Face
@data_analysis_ml
#LLM #ML #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
SmolVLM - серия компактных VLM отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.
Только что были выпущены SmolVLM (256M и 500M), которым требуются GPU <1GB для запуска.
Модели настолько маленькт, что могут работать 100% локально в вашем браузере на WebGPU!
🤗 Модели: https://huggingface.co/collections/HuggingFaceTB/smolvlm-256m-and-500m-6791fafc5bb0ab8acc960fb0
@ai_machinelearning_big_data
#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.
Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.
Модель выдает более подробные и структурированный ответы.
💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.
📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.
🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.
Еще один крутой релиз понедельника!
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
@ai_machinelearning_big_data
#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.
Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.
В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.
Для интеграции с Python используется пакет
xet-core,
написанный на Rust, который обрабатывает все низкоуровневые детали.Чтобы начать использовать Xet, установите дополнительную зависимость:
pip install -U huggingface_hub[hf_xet]
После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.
Доплнительно:
huggingface-cli delete-cache
получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size
).@ai_machinelearning_big_data
#huggingface #release #xet
Please open Telegram to view this post
VIEW IN TELEGRAM
🩺 Google выпустила MedGemma — открытые модели ИИ для медицины
На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.
📦 В коллекции:
•
•
•
🔍 Что умеют:
✅ Обнаружение патологий на рентген-снимках
✅ Ответы на медицинские вопросы (VQA)
✅ Генерация медицинских отчётов
✅ Обработка клинических заметок, триажа, историй болезни
📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9
🧪 Пример использования:
🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
📝 Лицензия: Apache 2.0 (с медицинским соглашением)
#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.
📦 В коллекции:
•
medgemma-4b-it
— мультимодальная модель (текст + изображения) •
medgemma-4b-pt
— предварительно обученная версия •
medgemma-27b-text-it
— огромная текстовая модель для клинической документации🔍 Что умеют:
✅ Обнаружение патологий на рентген-снимках
✅ Ответы на медицинские вопросы (VQA)
✅ Генерация медицинских отчётов
✅ Обработка клинических заметок, триажа, историй болезни
📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9
🧪 Пример использования:
from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")
🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
📝 Лицензия: Apache 2.0 (с медицинским соглашением)
#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
Forwarded from Machine learning Interview
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
✔️ Подробнее
@machinelearning_interview
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
notebook.ipynb
в свой репозиторий модели — и Hugging Face автоматически подхватит его. Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 PyTorch Distributed Checkpointing теперь поддерживает HuggingFace safetensors
📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.
🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны
🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в
🛠 Как использовать:
• Просто передай новый load planner и storage reader в
• И аналогично — save planner + writer для
• Всё остальное работает как раньше
📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны
#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource
https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing
@data_analysis_ml
📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.
🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны
🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в
torchtune
, став первым пользователем новой фичи🛠 Как использовать:
• Просто передай новый load planner и storage reader в
load()
• И аналогично — save planner + writer для
save()
• Всё остальное работает как раньше
📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны
#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource
https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing
@data_analysis_ml