VIRSUN
15.8K subscribers
335 photos
200 videos
2 files
205 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
💥 خبر فوق‌العاده برای علاقه‌مندان به هوش مصنوعی!

🧠 سرویس هوش مصنوعی Manus AI حالا به همه کاربران روزانه اعتبار رایگان می‌ده — بدون نیاز به پرداخت اولیه یا اشتراک پولی!

📌 با فقط یک ثبت‌نام ساده، 1000 اعتبار رایگان دائمی دریافت کن! این اعتبار بدون تاریخ انقضاست و برای انجام کارهای مختلف هوش مصنوعی قابل استفاده است.


---

🎯 چند نمونه از قابلیت‌های Manus AI و هزینه‌های تقریبی هر Task:

📊 تحلیل داده و رسم نمودار حرفه‌ای: فقط با 200 اعتبار
🌐 طراحی یک وب‌سایت ساده: تنها 360 اعتبار
📱 ساخت اپلیکیشن پیشرفته (موبایل/وب): تا 900 اعتبار
🧾 تولید کد در زبان‌های مختلف برنامه‌نویسی
📚 خلاصه‌سازی مقالات یا استخراج نکات کلیدی
🌍 ترجمه حرفه‌ای به زبان‌های مختلف با حفظ دقت و سبک
🎨 تولید تصاویر با هوش مصنوعی (AI Image Generation)
🤖 ساخت بات یا ابزارهای تعاملی هوشمند
و ده‌ها قابلیت دیگه در زمینه‌ی برنامه‌نویسی، طراحی، دیتا ساینس، مارکتینگ و...


---

🆓 تنها محدودیت نسخه رایگان:
🔹 هر کاربر رایگان می‌تونه فقط یک Task در روز ارسال کنه.
(برای استفاده بیشتر، امکان ارتقا به نسخه حرفه‌ای هم هست)


---

📲 قابل استفاده در همه پلتفرم‌ها: 📱 Android | 🍏 iOS | 💻 Web

🔗 برای ثبت‌نام و دریافت اعتبار رایگان وارد سایت شوید:
🌐 manus.ai


---

📌 اگر به دنیای هوش مصنوعی علاقه‌مند هستی، حتماً این فرصت رو از دست نده!

📚
📢 کانال ما: @rss_ai_ir

#هوش_مصنوعی #ManusAI #AI_Tools #ابزار_هوش_مصنوعی #فناوری #تکنولوژی #خبر #دیتا_ساینس #برنامه‌نویسی #DataScience #MachineLearning #DeepLearning
2👍1👏1
🧠 چه زمانی باید از یادگیری چندوظیفه‌ای (Multi-Task Learning) استفاده کنیم؟
@rss_ai_ir

---

یادگیری چندوظیفه‌ای یا Multi-Task Learning (MTL) یکی از رویکردهای قدرتمند در یادگیری ماشین است که با آموزش هم‌زمان چند وظیفه مرتبط، باعث بهبود دقت، تعمیم‌پذیری و کاهش overfitting می‌شود. اما آیا همیشه استفاده از آن منطقی است؟ نه! فقط در شرایط خاصی باید سراغ MTL رفت. 👇

---

۱. وجود چند هدف مرتبط (Correlated Tasks):
اگر چند خروجی یا برچسب در داده‌ها داری که به‌صورت مفهومی یا آماری به هم وابسته‌اند (مثل تشخیص سن، جنسیت و حالت چهره)، یادگیری هم‌زمان آن‌ها می‌تونه باعث بهبود عملکرد همه وظایف بشه.

---

۲. کمبود داده برای برخی وظایف:
وقتی داده کافی برای یک وظیفه نداری ولی برای وظیفه‌های مرتبط داده موجوده، MTL به مدل کمک می‌کنه از دانش وظایف دیگر برای بهبود یادگیری استفاده کنه.

---

۳. جلوگیری از Overfitting در وظایف کوچک:
با اشتراک‌گذاری پارامترها بین وظایف، مدل از حافظه بیش‌از‌حد روی یک وظیفه خاص جلوگیری می‌کنه و بهتر تعمیم می‌یابد.

---

۴. اشتراک ساختار در ورودی یا ویژگی‌ها:
در مسائلی که ویژگی‌های ورودی بین چند وظیفه مشترک است (مثلاً یک تصویر ورودی برای چند برچسب مختلف)، پیاده‌سازی یک معماری MTL بسیار مؤثر است.

---

۵. نیاز به بهره‌وری در منابع:
به‌جای آموزش چند مدل جداگانه، یک مدل MTL می‌تونه چندین وظیفه را هم‌زمان با منابع محاسباتی کمتر انجام دهد.

---

⚠️ چه زمانی استفاده نکنیم؟
🔸 زمانی که وظایف کاملاً بی‌ربط یا متضادند
🔸 وقتی یکی از وظایف به دقت بسیار بالا نیاز دارد و باقی فقط مزاحمند
🔸 وقتی داده‌ها در فرمت و توزیع بسیار متفاوت هستند

---

📊 یادگیری چندوظیفه‌ای می‌تونه یک استراتژی فوق‌العاده باشه، اما فقط وقتی درست به‌کار بره!

#یادگیری_چندوظیفه‌ای #MultiTaskLearning #یادگیری_ماشین #هوش_مصنوعی #MachineLearning #DeepLearning #DataScience #MTL

📡 کانال ما رو دنبال کن:
🔗 https://t.me/rss_ai_ir
👍2🔥1🙏1
🔧 برای اجرای موفق پروژه‌های هوش مصنوعی در صنعت، به چه تخصص‌هایی در تیم نیاز داریم؟

اجرای یک پروژه صنعتی مبتنی بر AI فقط به یک برنامه‌نویس نیاز ندارد! برای رسیدن به نتایج دقیق، قابل‌اعتماد و کاربردی، تیم باید چندتخصصی باشد.

📌 مهم‌ترین نقش‌ها:

1️⃣ مهندس داده (Data Engineer)
مسئول جمع‌آوری، پاک‌سازی و ساختاردهی داده‌ها از تجهیزات صنعتی یا سیستم‌های ERP و SCADA.

2️⃣ دانشمند داده (Data Scientist)
تحلیل داده‌ها، انتخاب ویژگی‌های مهم، ساخت مدل‌های اولیه و ارزیابی دقیق نتایج.

3️⃣ متخصص یادگیری ماشین / یادگیری عمیق
طراحی و پیاده‌سازی مدل‌های هوشمند برای تشخیص خطا، پیش‌بینی عملکرد یا بهینه‌سازی فرآیند.

4️⃣ متخصص دامنه صنعتی (Domain Expert)
فردی آشنا با فرآیندهای صنعتی که به تیم کمک می‌کند داده‌ها را به‌درستی تفسیر کند و خروجی مدل‌ها را کاربردی نماید.

5️⃣ مهندس نرم‌افزار / پیاده‌سازی
برای تبدیل مدل به یک سیستم واقعی، رابط کاربری، اتصال به تجهیزات صنعتی یا نصب در بستر صنعتی (on-premise).

6️⃣ مدیر پروژه یا رهبر فنی
هماهنگ‌کننده اعضا، زمان‌بندی، ارتباط با مشتری و تضمین هم‌راستایی فنی و تجاری.


---

🎯 در دنیای واقعی، تیم‌های کوچک ممکن است این نقش‌ها را با ترکیب چند تخصص در یک فرد انجام دهند. اما برای پروژه‌های بزرگ‌تر یا حیاتی، حضور این تخصص‌ها حیاتی است.

#هوش_مصنوعی #AI_صنعتی #پروژه_صنعتی
#تخصص_های_AI #SCADA #DataScience
@rss_ai_ir 👨‍🏭👩‍💻
21🔥18👍15🎉15👏14🥰12😁9🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 تکنیک بوستینگ (Boosting) در یادگیری ماشین

بوستینگ یکی از قدرتمندترین تکنیک‌ها در یادگیری تجمعی (Ensemble Learning) است که هدف آن ترکیب چندین مدل ضعیف (Weak Learners) برای ساخت یک مدل قوی با خطای کم است.

🔹 ایده اصلی
در بوستینگ، مدل‌ها به‌صورت پیاپی (Sequential) آموزش داده می‌شوند. هر مدل جدید تلاش می‌کند خطاهای مدل‌های قبلی را اصلاح کند. به این ترتیب، وزن بیشتری به نمونه‌هایی داده می‌شود که در مراحل قبلی به‌درستی پیش‌بینی نشده‌اند.

🔹 مراحل کلی

1. شروع با یک مدل ضعیف (مثلاً درخت تصمیم کوچک)
2. محاسبه خطاها و افزایش وزن داده‌های سخت
3. آموزش مدل بعدی با تمرکز بر داده‌های دارای خطای بالا
4. ترکیب خروجی مدل‌ها (مثلاً با میانگین وزنی یا جمع‌بندی)



🔹 انواع معروف بوستینگ

AdaBoost → اولین نسخه مشهور بوستینگ، تغییر وزن نمونه‌ها پس از هر مرحله

Gradient Boosting → استفاده از گرادیان برای کاهش خطا به‌صورت مرحله‌ای

XGBoost → نسخه بهینه‌سازی‌شده با سرعت و دقت بالا

LightGBM → سریع و مناسب داده‌های حجیم

CatBoost → بهینه برای داده‌های دسته‌ای (Categorical)


🔹 مزایا

♻️دقت بالا در مسائل طبقه‌بندی و رگرسیون
♻️توانایی مدیریت داده‌های پیچیده
♻️کاهش Bias و بهبود Generalization


🔹 معایب

♻️حساس به نویز و داده‌های پرت
♻️هزینه محاسباتی بالا در مجموعه داده‌های بزرگ


📌 بوستینگ در بسیاری از مسابقات داده‌کاوی (Kaggle) و پروژه‌های صنعتی، انتخاب اول برای رسیدن به بالاترین دقت است.

#هوش_مصنوعی #یادگیری_ماشین #Boosting #DataScience #MachineLearning #EnsembleLearning #AI #XGBoost #LightGBM #CatBoost #GradientBoosting

@rss_ai_ir 🤖
🎉8👍6👏65😁5🔥4🥰2
🧠 انتخاب ابزار مناسب: شبکه عصبی سنتی (NN) یا شبکه کانولوشنی (CNN)؟ 🤔

در دنیای هوش مصنوعی، انتخاب معماری درست برای شبکه عصبی، کلید موفقیت پروژه شماست. دو تا از معروف‌ترین سربازهای این میدان، شبکه‌های عصبی سنتی (که بهشون MLP هم میگن) و شبکه‌های عصبی کانولوشنی (CNN) هستند.

اما سوال اصلی اینجاست: کِی و چرا باید از هرکدوم استفاده کنیم؟ بیایید یک بار برای همیشه این موضوع را روشن کنیم! 👇

---

📊 ۱. شبکه‌های عصبی سنتی (NN / MLP): تحلیلگر داده‌های ساختاریافته

این شبکه‌ها مثل یک تحلیلگر خبره هستند که با جداول داده (مثل فایل اکسل) کار می‌کنند. هر ورودی برای آن‌ها یک ویژگی مستقل است.

🔑 چه موقع از NN استفاده کنیم؟
وقتی داده‌های شما ساختاریافته (Structured) و جدولی (Tabular) هستند و موقعیت مکانی داده‌ها نسبت به هم اهمیتی ندارد.

مثال‌های عالی:
♻️ پیش‌بینی قیمت مسکن: ورودی‌ها: متراژ، تعداد اتاق، سال ساخت، محله. (ترتیب این ستون‌ها مهم نیست). 🏠
♻️ تشخیص ریزش مشتری (Churn): ورودی‌ها: سن مشتری، نوع اشتراک، میانگین خرید ماهانه. 📈
♻️ اعتبارسنجی بانکی: ورودی‌ها: درآمد، سابقه وام، میزان بدهی. 💳

💡 قانون سرانگشتی: اگر داده‌های شما در یک فایل CSV یا جدول اکسل به خوبی جا می‌شوند، به احتمال زیاد NN گزینه مناسبی برای شماست.

---

🖼️ ۲. شبکه‌های عصبی کانولوشنی (CNN): استاد تشخیص الگوهای فضایی

قدرت اصلی CNN در درک روابط فضایی (Spatial Relationships) بین داده‌هاست. این شبکه‌ها دنیا را مثل ما می‌بینند: به جای دیدن پیکسل‌های جدا، الگوها، لبه‌ها، بافت‌ها و اشکال را تشخیص می‌دهند.

🔑 چه موقع از CNN استفاده کنیم؟
وقتی داده‌های شما ساختاری شبیه به شبکه (Grid-like) دارند و همسایگی و موقعیت داده‌ها بسیار مهم است.

مثال‌های عالی:
♻️ پردازش تصویر: تشخیص چهره، دسته‌بندی عکس‌ها (سگ یا گربه؟)، پیدا کردن اشیاء در تصویر. 📸
♻️ تحلیل ویدئو: تشخیص حرکت یا فعالیت در ویدئو. 📹
♻️ تصویربرداری پزشکی: تشخیص تومور در اسکن‌های MRI یا CT-Scan. 🩺
♻️ تحلیل صدا: با تبدیل صدا به تصویر (اسپکتروگرام)، می‌توان الگوهای صوتی را با CNN تحلیل کرد. 🔊

💡 قانون سرانگشتی: اگر با داده‌هایی مثل عکس، ویدئو یا هر نوع داده‌ای که در آن "پیکسل‌های همسایه" با هم مرتبط هستند کار می‌کنید، CNN پادشاه بی‌رقیب است.

---

خلاصه نهایی:

♻️ داده‌های جدولی و بدون وابستگی مکانی؟ 👈 NN سنتی
♻️ داده‌های تصویری، ویدیویی یا با ساختار شبکه‌ای؟ 👈 CNN

انتخاب درست ابزار، نیمی از مسیر موفقیت است! 🚀

#هوش_مصنوعی #یادگیری_عمیق #شبکه_عصبی #پردازش_تصویر #علم_داده #ماشین_لرنینگ #آموزش_هوش_مصنوعی #CNN #NeuralNetworks #DeepLearning #DataScience
👍9🔥65🎉5😁3👏1