VIRSUN
15.8K subscribers
335 photos
200 videos
2 files
205 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
Download Telegram
🧠 انتخاب ابزار مناسب: شبکه عصبی سنتی (NN) یا شبکه کانولوشنی (CNN)؟ 🤔

در دنیای هوش مصنوعی، انتخاب معماری درست برای شبکه عصبی، کلید موفقیت پروژه شماست. دو تا از معروف‌ترین سربازهای این میدان، شبکه‌های عصبی سنتی (که بهشون MLP هم میگن) و شبکه‌های عصبی کانولوشنی (CNN) هستند.

اما سوال اصلی اینجاست: کِی و چرا باید از هرکدوم استفاده کنیم؟ بیایید یک بار برای همیشه این موضوع را روشن کنیم! 👇

---

📊 ۱. شبکه‌های عصبی سنتی (NN / MLP): تحلیلگر داده‌های ساختاریافته

این شبکه‌ها مثل یک تحلیلگر خبره هستند که با جداول داده (مثل فایل اکسل) کار می‌کنند. هر ورودی برای آن‌ها یک ویژگی مستقل است.

🔑 چه موقع از NN استفاده کنیم؟
وقتی داده‌های شما ساختاریافته (Structured) و جدولی (Tabular) هستند و موقعیت مکانی داده‌ها نسبت به هم اهمیتی ندارد.

مثال‌های عالی:
♻️ پیش‌بینی قیمت مسکن: ورودی‌ها: متراژ، تعداد اتاق، سال ساخت، محله. (ترتیب این ستون‌ها مهم نیست). 🏠
♻️ تشخیص ریزش مشتری (Churn): ورودی‌ها: سن مشتری، نوع اشتراک، میانگین خرید ماهانه. 📈
♻️ اعتبارسنجی بانکی: ورودی‌ها: درآمد، سابقه وام، میزان بدهی. 💳

💡 قانون سرانگشتی: اگر داده‌های شما در یک فایل CSV یا جدول اکسل به خوبی جا می‌شوند، به احتمال زیاد NN گزینه مناسبی برای شماست.

---

🖼️ ۲. شبکه‌های عصبی کانولوشنی (CNN): استاد تشخیص الگوهای فضایی

قدرت اصلی CNN در درک روابط فضایی (Spatial Relationships) بین داده‌هاست. این شبکه‌ها دنیا را مثل ما می‌بینند: به جای دیدن پیکسل‌های جدا، الگوها، لبه‌ها، بافت‌ها و اشکال را تشخیص می‌دهند.

🔑 چه موقع از CNN استفاده کنیم؟
وقتی داده‌های شما ساختاری شبیه به شبکه (Grid-like) دارند و همسایگی و موقعیت داده‌ها بسیار مهم است.

مثال‌های عالی:
♻️ پردازش تصویر: تشخیص چهره، دسته‌بندی عکس‌ها (سگ یا گربه؟)، پیدا کردن اشیاء در تصویر. 📸
♻️ تحلیل ویدئو: تشخیص حرکت یا فعالیت در ویدئو. 📹
♻️ تصویربرداری پزشکی: تشخیص تومور در اسکن‌های MRI یا CT-Scan. 🩺
♻️ تحلیل صدا: با تبدیل صدا به تصویر (اسپکتروگرام)، می‌توان الگوهای صوتی را با CNN تحلیل کرد. 🔊

💡 قانون سرانگشتی: اگر با داده‌هایی مثل عکس، ویدئو یا هر نوع داده‌ای که در آن "پیکسل‌های همسایه" با هم مرتبط هستند کار می‌کنید، CNN پادشاه بی‌رقیب است.

---

خلاصه نهایی:

♻️ داده‌های جدولی و بدون وابستگی مکانی؟ 👈 NN سنتی
♻️ داده‌های تصویری، ویدیویی یا با ساختار شبکه‌ای؟ 👈 CNN

انتخاب درست ابزار، نیمی از مسیر موفقیت است! 🚀

#هوش_مصنوعی #یادگیری_عمیق #شبکه_عصبی #پردازش_تصویر #علم_داده #ماشین_لرنینگ #آموزش_هوش_مصنوعی #CNN #NeuralNetworks #DeepLearning #DataScience
👍9🔥65🎉5😁3👏1