Data Science by ODS.ai 🦜
49.6K subscribers
407 photos
43 videos
7 files
1.55K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
Google has released a new open and free machine learning course. The course is built around Google's TensorFlow API, which is now one step closer to becoming an industry standard.

https://developers.google.com/machine-learning/crash-course/
#mooc #course #google #tensorflow
Microsoft’s AI course is now open and free

Microsoft Professional Program for Artificial Intelligence — previously being available only to employees is now available at edx.org for free. Program includes 10 courses from basic python programming to deep learning and reinforcement learning disciplines.

https://academy.microsoft.com/en-us/professional-program/tracks/artificial-intelligence/

#mooc #microsoft #course
27.23TB of research data in torrents! Includes dataset such as:
- Breast Cancer Cell Segmentation
- Liver Tumor Segmentation
- MRI Lesion Segmentation in Multiple Sclerosis
- Electron Microscopy, Hippocampus
- Digital Surface & Digital Terrain Model

And courses recordings, including:
- Introduction to Computer Science [CS50x] [Harvard] [2018]
- Artificial Intelligence(EDX)
- Richard Feynman's Lectures on Physics (The Messenger Lectures) (🔥)
- [Coursera] Machine Learning (Stanford University) (ml)
- [Coursera] Natural Language Processing (Stanford University) (nlp)
- [Coursera] Neural Networks for Machine Learning (University of Toronto) (neuralnets)

http://academictorrents.com/

#course #torrent #dataset
🎓 Free «Advanced Deep Learning and Reinforcement Learning» course.

#DeepMind researchers have released video recordings of lectures from «Advanced Deep Learning and Reinforcement Learning» a course on deep RL taught at #UCL earlier this year.

YouTube Playlist: https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs

#course #video #RL #DL
EE-559 – DEEP LEARNING (SPRING 2019)

Deep learning course covering the main deep learning tools and theoretical results, with examples in the #PyTorch framework.

Taught by François Fleuret from École Polytechnique Fédérale de Lausanne, Switzerland.

Link: https://fleuret.org/ee559/

#DL #course #learnhardgopro
🔥🎓New FastAI's free online course on NLP

It is called «A Code-First Introduction to Natural Language Processing». All code & videos are available for free online, make sure you save this link into bookmarks and at least review the content, because it provides opportunity not only to learn new skills, but to actually understand how NLP works.

Link: https://www.fast.ai/2019/07/08/fastai-nlp/

#NLP #NLU #DL #MOOC #FastAI #course
🎓 Reinforcement Learning Course from OpenAI

Reinforcement Learning becoming significant part of the data scientist toolbox.
OpenAI created and published one of the best courses in #RL. Algorithms implementation written in #Tensorflow.
But if you are more comfortable with #PyTorch, we have found #PyTorch implementation of this algs

OpenAI Course: https://spinningup.openai.com/en/latest/
Tensorflow Code: https://github.com/openai/spinningup
PyTorch Code: https://github.com/kashif/firedup

#MOOC #edu #course #OpenAI
Matus Telgarsky’s Deep Learning Theory course

Course syllabus, lecture handout materials from Illinois university.

Link: http://mjt.cs.illinois.edu/courses/dlt-f19/

#MOOC #DL #Theory #Course
​​Last day to apply for free Skoltech's Summer School of Machine Learning

Benefits of School:
+ top speakers from leading Data Science centers
+ new knowledge and advanced trends in statistical methods of machine learning.
+ free participation

How to apply:
Today is the LAST DAY to apply to school at the website

Link: https://smiles.skoltech.ru/school

#openedu #course #free #ml
Forwarded from Machinelearning
🔥 Бесплатный курс от Microsoft «ИИ-агенты для начинающих»

Курс содержит пошаговые инструкции с примерами кода, которые помогут научиться создавать автономных агентов с использованием машинного обучения.

Фокус на AI-агентах:
Если вас интересует именно разработка агентов — например, для симуляций, игр или интерактивных систем — данный курс будет полезен.

Каждый урок включает в себя:
- Лекцию, (видео уроки появятся в марте 2025 года)
- Примеры кода на Python с поддержкой Azure AI Foundry и Github Models
- Практические задания
- Ссылки на полезные дополнительные ресурсы

Если это ваш первый опыт работы с агентами, у Microsoft есть еще 1 курс «Генеративный ИИ для начинающих», который содержит 21 урок по построению моделей с помощью GenAI, лучше начать с него.

Переведен на 9 различных языков (русского нет).

Github

@ai_machinelearning_big_data

#course #Microsoft #aiagents #ai #ml #opensource #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM