ββπ₯Interactive demo of GAN turning doodles into beautiful pictures
NVidia released #GauGAN for anyone to use. Trained on 1M images, the #GAN tool automatically turns doodles into photorealistic landscapes.
Project page: https://www.nvidia.com/en-us/research/ai-playground/
Interactive demo: http://nvidia-research-mingyuliu.com/gaugan
#Nvidia #CV #DL
NVidia released #GauGAN for anyone to use. Trained on 1M images, the #GAN tool automatically turns doodles into photorealistic landscapes.
Project page: https://www.nvidia.com/en-us/research/ai-playground/
Interactive demo: http://nvidia-research-mingyuliu.com/gaugan
#Nvidia #CV #DL
ββmellotron by #NVIDIA
It's a multispeaker #voice synthesis model based on #Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data.
By explicitly conditioning on rhythm and continuous pitch contours from an audio signal or music score, Mellotron is able to generate #speech in a variety of styles ranging from reading speech to expressive speech, from slow drawls to rap and from monotonous voice to singing voice.
Unlike other methods, Mellotron trains using only read speech data without alignments between text and audio.
Site: https://nv-adlr.github.io/Mellotron
Paper: https://arxiv.org/abs/1910.11997
Git: https://github.com/NVIDIA/mellotron
It's a multispeaker #voice synthesis model based on #Tacotron 2 GST that can make a voice emote and sing without emotive or singing training data.
By explicitly conditioning on rhythm and continuous pitch contours from an audio signal or music score, Mellotron is able to generate #speech in a variety of styles ranging from reading speech to expressive speech, from slow drawls to rap and from monotonous voice to singing voice.
Unlike other methods, Mellotron trains using only read speech data without alignments between text and audio.
Site: https://nv-adlr.github.io/Mellotron
Paper: https://arxiv.org/abs/1910.11997
Git: https://github.com/NVIDIA/mellotron
ββAn autonomous AI racecar using NVIDIA Jetson Nano
Usually DS means some blue collar work. Rare cases suggest physical interactions. This set by #NVidia allows to build $400/$600 toy car capable of #selfdriving.
#JetRacer comes with a couple examples to get you up and running. The examples are in the format of Jupyter Notebooks, which are interactive documents which combine text, code, and visualization. Once you've completed the notebooks, start tweaking them to create your own racing software!
Github: https://github.com/NVIDIA-AI-IOT/jetracer
#autonomousvehicle #rl #jupyter #physical
Usually DS means some blue collar work. Rare cases suggest physical interactions. This set by #NVidia allows to build $400/$600 toy car capable of #selfdriving.
#JetRacer comes with a couple examples to get you up and running. The examples are in the format of Jupyter Notebooks, which are interactive documents which combine text, code, and visualization. Once you've completed the notebooks, start tweaking them to create your own racing software!
Github: https://github.com/NVIDIA-AI-IOT/jetracer
#autonomousvehicle #rl #jupyter #physical
ββOpenCV βdnnβ with NVIDIA GPUs: 1.549% faster YOLO, SSD, and Mask R-CNN
- Object detection and segmentation
- Working Python implementations of each
- Includes pre-trained models
tutorial: https://t.co/Wt0IrJObcE?amp=1
#OpenCV #dl #nvidia
- Object detection and segmentation
- Working Python implementations of each
- Includes pre-trained models
tutorial: https://t.co/Wt0IrJObcE?amp=1
#OpenCV #dl #nvidia
This media is not supported in your browser
VIEW IN TELEGRAM
Nvidia AI Noise Reduction
#Nvidia launches #KrispAI competitor Noise Reduction by AI on RTX Videocards.
Seems it works significantly better then other that kind of tools. But it needs to have Nvidia RTX officially.
But it possible to run it on older cards. The instruction is below. Or you can just download already hacked executable (also, below)
Setup Guide: https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
The instruction: https://forums.guru3d.com/threads/nvidia-rtx-voice-works-without-rtx-gpu-heres-how.431781/
Executable (use it on your own risk): https://mega.nz/file/CJ0xDYTB#LPorY_aPVqVKfHqWVV7zxK8fNfRmxt6iw6KdkHodz1M
#noisereduction #soundlearning #dl #noise #sound #speech #nvidia
#Nvidia launches #KrispAI competitor Noise Reduction by AI on RTX Videocards.
Seems it works significantly better then other that kind of tools. But it needs to have Nvidia RTX officially.
But it possible to run it on older cards. The instruction is below. Or you can just download already hacked executable (also, below)
Setup Guide: https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
The instruction: https://forums.guru3d.com/threads/nvidia-rtx-voice-works-without-rtx-gpu-heres-how.431781/
Executable (use it on your own risk): https://mega.nz/file/CJ0xDYTB#LPorY_aPVqVKfHqWVV7zxK8fNfRmxt6iw6KdkHodz1M
#noisereduction #soundlearning #dl #noise #sound #speech #nvidia
ββLearning to Simulate Dynamic Environments with GameGAN
#Nvidia designed a GAN that able to recreate games without any game engine. To train it, authors of the model use experience collected by reinforcement learning and other techniques.
GameGAN successfully reconstructed all mechanics of #Pacman game. Moreover, the trained model can generate new mazes that have never appeared in the original game. It can even replace background (static objects) and foreground (dynamic objects) with different images!
As the authors say, applying reinforcement learning algorithms to real world tasks requires accurate simulation of that task. Currently designing such simulations is expensive and time-consuming. Using neural networks instead of hand-written simulations may help to solve these problems.
Paper: https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf
Blog: https://blogs.nvidia.com/blog/2020/05/22/gamegan-research-pacman-anniversary/
Github Page: https://nv-tlabs.github.io/gameGAN/
#GAN #RL
#Nvidia designed a GAN that able to recreate games without any game engine. To train it, authors of the model use experience collected by reinforcement learning and other techniques.
GameGAN successfully reconstructed all mechanics of #Pacman game. Moreover, the trained model can generate new mazes that have never appeared in the original game. It can even replace background (static objects) and foreground (dynamic objects) with different images!
As the authors say, applying reinforcement learning algorithms to real world tasks requires accurate simulation of that task. Currently designing such simulations is expensive and time-consuming. Using neural networks instead of hand-written simulations may help to solve these problems.
Paper: https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf
Blog: https://blogs.nvidia.com/blog/2020/05/22/gamegan-research-pacman-anniversary/
Github Page: https://nv-tlabs.github.io/gameGAN/
#GAN #RL
ββNvidia announced new card RTX 3090
RTX 3090 is roughly 2 times more powerful than 2080.
There is probably no point in getting 3080 because RAM volume is only 10G.
But what really matters, is how it was presented. Purely technological product for mostly proffesionals, techheads and gamers was presented with absolute brialliancy. That is much more exciting then the release itself.
YouTube: https://www.youtube.com/watch?v=E98hC9e__Xs
#Nvidia #GPU #techstack
RTX 3090 is roughly 2 times more powerful than 2080.
There is probably no point in getting 3080 because RAM volume is only 10G.
But what really matters, is how it was presented. Purely technological product for mostly proffesionals, techheads and gamers was presented with absolute brialliancy. That is much more exciting then the release itself.
YouTube: https://www.youtube.com/watch?v=E98hC9e__Xs
#Nvidia #GPU #techstack
Data Science by ODS.ai π¦
ββNvidia announced new card RTX 3090 RTX 3090 is roughly 2 times more powerful than 2080. There is probably no point in getting 3080 because RAM volume is only 10G. But what really matters, is how it was presented. Purely technological product for mostlyβ¦
#NVidia performance per dollar
ββNVidia released a technology to change face alignment on video
Nvidia has unveiled AI face-alignment that means you're always looking at the camera during video calls. Its new Maxine platform uses GANs to reconstruct the unseen parts of your head β just like a deepfake.
Link: https://www.theverge.com/2020/10/5/21502003/nvidia-ai-videoconferencing-maxine-platform-face-gaze-alignment-gans-compression-resolution
#NVidia #deepfake #GAN
Nvidia has unveiled AI face-alignment that means you're always looking at the camera during video calls. Its new Maxine platform uses GANs to reconstruct the unseen parts of your head β just like a deepfake.
Link: https://www.theverge.com/2020/10/5/21502003/nvidia-ai-videoconferencing-maxine-platform-face-gaze-alignment-gans-compression-resolution
#NVidia #deepfake #GAN
Unsupervised 3D Neural Rendering of Minecraft Worlds
Work on unsupervised neural rendering framework for generating photorealistic images of Minecraft (or any large 3D block worlds).
Why this is cool: this is a step towards better graphics for games.
Project Page: https://nvlabs.github.io/GANcraft/
YouTube: https://www.youtube.com/watch?v=1Hky092CGFQ&t=2s
#GAN #Nvidia #Minecraft
Work on unsupervised neural rendering framework for generating photorealistic images of Minecraft (or any large 3D block worlds).
Why this is cool: this is a step towards better graphics for games.
Project Page: https://nvlabs.github.io/GANcraft/
YouTube: https://www.youtube.com/watch?v=1Hky092CGFQ&t=2s
#GAN #Nvidia #Minecraft
YouTube
NVIDIA GANcraft
Convert user-created 3D block worlds to realistic worlds!
More details at https://nvlabs.github.io/GANcraft/.
More details at https://nvlabs.github.io/GANcraft/.
14 seconds of April #Nvidia 's CEO speech was generated in silico
Why this important: demand for usage of 3080 and newer GPU models might also get pumped by CGI artists and researchers working in VR / AR tech.
And this raises the bar for #speechsinthesis / #speechgeneration and definately for the rendering of photorealistic picture.
YouTube making of video: https://www.youtube.com/watch?v=1qhqZ9ECm70&t=1430s
Vice article on the subject: https://www.vice.com/en/article/88nbpa/nvidia-reveals-its-ceo-was-computer-generated-in-keynote-speech
Why this important: demand for usage of 3080 and newer GPU models might also get pumped by CGI artists and researchers working in VR / AR tech.
And this raises the bar for #speechsinthesis / #speechgeneration and definately for the rendering of photorealistic picture.
YouTube making of video: https://www.youtube.com/watch?v=1qhqZ9ECm70&t=1430s
Vice article on the subject: https://www.vice.com/en/article/88nbpa/nvidia-reveals-its-ceo-was-computer-generated-in-keynote-speech
YouTube
Connecting in the Metaverse: The Making of the GTC Keynote
See how a small team of artists were able to blur the line between real and rendered in NVIDIAβs #GTC21 keynote in this behind-the-scenes documentary. Read more: https://nvda.ws/3s97Tpy
@NVIDIAOmniverse is an open platform built for virtual collaborationβ¦
@NVIDIAOmniverse is an open platform built for virtual collaborationβ¦
ββπ₯Alias-Free Generative Adversarial Networks (StyleGAN3) release
King is dead! Long live the King! #StyleGAN2 was #SOTA and default standard for generating images. #Nvidia released update version, which will lead to more realistic images generated by the community.
Article: https://nvlabs.github.io/stylegan3/
GitHub: https://github.com/NVlabs/stylegan3
Colab: https://colab.research.google.com/drive/1BXNHZBai-pXtP-ncliouXo_kUiG1Pq7M
#GAN #dl
King is dead! Long live the King! #StyleGAN2 was #SOTA and default standard for generating images. #Nvidia released update version, which will lead to more realistic images generated by the community.
Article: https://nvlabs.github.io/stylegan3/
GitHub: https://github.com/NVlabs/stylegan3
Colab: https://colab.research.google.com/drive/1BXNHZBai-pXtP-ncliouXo_kUiG1Pq7M
#GAN #dl
ββEditGAN: High-Precision Semantic Image Editing
Nvidia researches built an approach for editing segments of a picture with supposedly realtime picture augmentation according to the segment alterations. No demo is available yet though.
All the photoshop power users should relax, because appereance of such a tools means less work for them, not that the demand for the manual retouch will cease.
Website: https://nv-tlabs.github.io/editGAN/
ArXiV: https://arxiv.org/abs/2111.03186
#GAN #Nvidia
Nvidia researches built an approach for editing segments of a picture with supposedly realtime picture augmentation according to the segment alterations. No demo is available yet though.
All the photoshop power users should relax, because appereance of such a tools means less work for them, not that the demand for the manual retouch will cease.
Website: https://nv-tlabs.github.io/editGAN/
ArXiV: https://arxiv.org/abs/2111.03186
#GAN #Nvidia
π₯ Say Goodbye to LoRA, Hello to DoRA π€©π€©
DoRA consistently outperforms LoRA with various tasks (LLM, LVLM, etc.) and backbones (LLaMA, LLaVA, etc.)
[Paper] https://arxiv.org/abs/2402.09353
[Code] https://github.com/NVlabs/DoRA
#Nvidia
#icml #PEFT #lora #ML #ai
@opendatascience
DoRA consistently outperforms LoRA with various tasks (LLM, LVLM, etc.) and backbones (LLaMA, LLaVA, etc.)
[Paper] https://arxiv.org/abs/2402.09353
[Code] https://github.com/NVlabs/DoRA
#Nvidia
#icml #PEFT #lora #ML #ai
@opendatascience
Forwarded from Machinelearning
Sana - ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²ΠΎ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎ 4096x4096 ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ. ΠΠ»Π°Π²Π½ΠΎΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Sana - Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅Π½ΡΠ° ΠΈ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΠ΅ΡΡΡΡΠ°ΠΌ, ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΡΡΡΠΈΡΡ Π΄Π°ΠΆΠ΅ Π½Π° Π½ΠΎΡΡΠ±ΡΠΊΠ΅.
Π‘Π΅ΠΊΡΠ΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Sana Π² Π΅Π΅ Π°ΡΡ ΠΈΡΠ΅ΠΊΡΡΡΠ΅, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ²:
Π‘ΠΆΠΈΠΌΠ°Π΅Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² 32 ΡΠ°Π·Π°, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠΊΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ Π»Π°ΡΠ΅Π½ΡΠ½ΡΡ ΡΠΎΠΊΠ΅Π½ΠΎΠ², ΡΡΠΎ, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΠΏΠΎΠ²ΡΡΠ°Π΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ 4K.
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ, ΡΡΠΊΠΎΡΡΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ 4K Π² 1.7 ΡΠ°Π·Π°.
Π Linear DiT Π²ΠΌΠ΅ΡΡΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ MLP-FFN ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Mix-FFN, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ Π² ΡΠ΅Π±Π΅ ΡΠ²Π΅ΡΡΠΊΡ 3x3 ΠΈ Gated Linear Unit (GLU). Mix-FFN ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠΊΠ°Π·Π°ΡΡΡΡ ΠΎΡ ΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±Π΅Π· ΠΏΠΎΡΠ΅ΡΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°.
ΠΠ½ΠΊΠΎΠ΄Π΅Ρ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° LLM Gemma, ΠΊΠΎΡΠΎΡΡΠΉ Π»ΡΡΡΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅Ρ ΡΠ΅ΠΊΡΡΠΎΠ²ΡΠ΅ Π·Π°ΠΏΡΠΎΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Ρ ΠΈ ΡΠΎΡΠ½Π΅Π΅ ΠΏΠ΅ΡΠ΅Π΄Π°Π΅Ρ ΠΈΡ ΡΠΌΡΡΠ» Π½Π° Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ.
ΠΠ»Ρ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ "ΡΠ΅ΠΊΡΡ - ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅" ΠΏΡΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈ ΡΠ½ΠΊΠΎΠ΄Π΅ΡΠ° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡ "ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΈ" (CHI), ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°ΡΡΠΈΠ»ΠΈ Gemma ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡ Π·Π°ΠΏΡΠΎΡΠ°.
Sana ΡΠΎΠ·Π΄Π°Π²Π°Π»Π°ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠ±ΠΎΡΠΊΠΈ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ VLM (VILA, InternVL2) Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΉ ΠΊ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ΅ΠΌ, Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ CLIP-ΠΎΡΠ΅Π½ΠΊΠΈ, Π±ΡΠ»ΠΈ ΠΎΡΠΎΠ±ΡΠ°Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠΈΠ΅ ΠΏΠ°ΡΡ "ΡΠ΅ΠΊΡΡ-ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅".
ΠΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΠ»ΠΎ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ, Π½Π°ΡΠΈΠ½Π°Ρ Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ 512x512 ΠΈ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°Ρ 4096x4096, Π° Π°Π»Π³ΠΎΡΠΈΡΠΌ Flow-DPM-Solver ΡΡΠΊΠΎΡΠΈΠ» ΠΏΡΠΎΡΠ΅ΡΡ Π²ΡΠ±ΠΎΡΠΊΠΈ, ΡΠΎΠΊΡΠ°ΡΠΈΠ² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°Π³ΠΎΠ² ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Flow-Euler-Solver.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Sana Π²ΠΏΠ΅ΡΠ°ΡΠ»ΡΡΡ:
β οΈ ΠΠ»Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅Π½ΡΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ 0.6B ΡΡΠ΅Π±ΡΠ΅ΡΡΡ 9GB VRAM, Π° Π΄Π»Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈ 1.6B - 12GB VRAM.
# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth
@ai_machinelearning_big_data
#AI #ML #Diffusion #SANA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
ΠΠΎ ΠΌΠ΅ΡΠ΅ ΡΠΎΡΡΠ° ΠΎΠ±ΡΠ΅ΠΌΠΎΠ² Π΄Π°Π½Π½ΡΡ ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ, Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½Π° Python ΠΈ NumPy, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π° CPU, Π½ΡΠΆΠ΄Π°ΡΡΡΡ Π² ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠΈ Π΄Π»Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ.
cuPyNumeric ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π°, ΡΡΠΎΠ±Ρ ΡΡΠ°ΡΡ Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠΈ NumPy, ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΡ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Ρ Python ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½Π° ΠΏΠ»Π°ΡΡΠΎΡΠΌΠ΅ NVIDIA. cuPyNumeric ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠ΄Π° ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ CPU Π΄ΠΎ ΡΡΠΏΠ΅ΡΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠΎΠ² Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ GPU ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π½ΠΎΠ΄Π°ΠΌΠΈ.
ΠΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½Π° Π½Π° Legate, ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅Ρ ΡΠΎΠ΄Π½ΠΎΠΉ Python ΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΠΉΡ NumPy. cuPyNumeric Π΄ΠΎΡΡΡΠΏΠ΅Π½ ΠΈΠ· conda (Π²Π΅ΡΡΠΈΡ Π½Π΅ Π½ΠΈΠΆΠ΅ 24.1) Π² legate channel. ΠΠ° ΡΠΈΡΡΠ΅ΠΌΠ°Ρ Ρ GPU ΠΏΠ°ΠΊΠ΅ΡΡ, ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠΊΠΎΡΠΈΡΠ΅Π»ΠΈ Π±ΡΠ΄ΡΡ Π²ΡΠ±ΡΠ°Π½Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ.
ΠΡΠΈΠΌΠ΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ cuPyNumeric - ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° 10 Π’Π ΠΌΠΈΠΊΡΠΎΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΠΊΡΡΡΠ½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠ²Π° NumPy Π·Π° ΠΎΠ΄ΠΈΠ½ Π΄Π΅Π½Ρ Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΉ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric
# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms
@ai_machinelearning_big_data
#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Must read and absolute banger of 500 pages.
π book
@opendatascience
#nvidia #cuda #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
1. Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΏΠΎ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΎΡ OpenAI
Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎΡ Π±ΠΎΠ»Π΅Π΅ ΠΊΡΡΠΏΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ, c ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π΅:
- Π‘ΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΠ΅ Π²ΡΡ ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΊΡΡΠΏΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ: Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ , ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π³ΠΎ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ΄ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ.
- ΠΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ: Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΊΠ°ΠΊ ΠΊΡΡΠΏΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΌΠ΅ΡΡΠΈΠΊ.
- Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ Π΄Π°Π½Π½ΡΡ Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ: ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΊΡΡΠΏΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΎΠ±ΡΡΠ°ΡΡΠ΅Π³ΠΎ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ , ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ.
- ΠΡΠ΅Π½ΠΊΠ° Π΄ΠΎΠΎΠ±ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ: ΠΡΠΎΠ²Π΅ΡΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ Π΄Π»Ρ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ.
2. Π£ΡΠ΅Π±Π½ΠΈΠΊ ΠΏΠΎ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎΡ PyTorch
Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΎΡ PyTorch, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΠ΅Ρ Π½ΠΈΠΊΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π·Π½Π°Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°Π·Π²ΡΡΡΡΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π°:
- ΠΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΡΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ: Π Π³Π°ΠΉΠ΄Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΠ· ΠΎΠ±ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ.
- ΠΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠΈΠΊΠ»ΠΎΠ² ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π² PyTorch: ΠΠ΄Π΅ΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΡΠΈΠΊΠ»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π·Π½Π°Π½ΠΈΠΉ.
- ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ ΠΈΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠ°.
Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΡΠ°Π³ΠΎΠ²ΡΠ΅ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΊΠΎΠ΄Π°, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ Π΅Π³ΠΎ ΡΠ΅Π½Π½ΡΠΌ ΡΠ΅ΡΡΡΡΠΎΠΌ, Π΅ΡΠ»ΠΈ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ Π½Π°ΡΡΠΈΡΡΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΡΠ΅Π΄Π°Ρ Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠ΅ΡΡΡΡΠ°ΠΌΠΈ.
βͺΠ‘ΡΡΠ»ΠΊΠ°
3. Jetson Introduction to Knowledge Distillation ΠΎΡ Nvidia
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ OpenCLIP (vision-language model) ΠΊ ΠΌΠΎΠ΄Π΅Π»ΠΈ ResNet18 Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π½Π° Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ STL10.
ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΠΌΡ, ΠΊΠ°ΠΊ Π²ΡΠ±ΠΎΡ Π΄Π°Π½Π½ΡΡ , ΠΌΠ΅ΡΠΎΠ΄Ρ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΈ Π°ΡΡ ΠΈΡΠ΅ΠΊΡΡΡΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π²Π»ΠΈΡΡΡ Π½Π° ΠΈΡΠΎΠ³ΠΎΠ²ΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ.
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΡΠΎΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ ΠΈΡ ΡΠ°Π·Π²ΡΡΡΡΠ²Π°Π½ΠΈΡ Π½Π° ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ NVIDIA Jetson Orin Nano.
4. Π£ΡΠ΅Π±Π½ΠΈΠΊ ΠΏΠΎ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΎΡ Keras
ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΈ Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ.
5. Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΏΠΎ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΠΈ ΠΎΡ
huggingface π€
ΠΠ΄Π΅ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΠΊΠ°ΠΊ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π΄ΠΈΡΡΠΈΠ»Π»ΡΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ ΡΠ°Π³ Π·Π° ΡΠ°Π³ΠΎΠΌ Π½Π° ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅.
6. ΠΠΈΡΡΠΈΠ»Π»ΡΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ Π΄Π»Ρ Π·Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ ΠΎΡ huggingface
ΠΠ΄Π΅ΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ, ΠΊΠ°ΠΊ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠ°ΠΉΠ½ΡΡΠ½ ViT-ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² MobileNet Ρ ΠΏΠΎΠΌΠΎΡΡΡ API Trainer ΠΈΠ· Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM