Data Science by ODS.ai 🦜
51K subscribers
363 photos
34 videos
7 files
1.52K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
There is an #opensource repository for automatic image captioning in #tensorflow
As article reports, researches have managed to significally improve quality of recognition.


https://research.googleblog.com/2016/09/show-and-tell-image-captioning-open.html

#deeplearning
​​Introducing AresDB: Uber’s GPU-Powered Open Source, Real-time Analytics Engine

Link: https://eng.uber.com/aresdb/

#Uber #analytics #opensource
Intro to Pythia — Visual Question Answering framework from Facebook

Pythia works in terms of #VQA by taking input picture and question and providing the answer to the latter in terms of picture semantics.


Link: https://link.medium.com/dknDKSuVqX
Previously: https://t.me/opendatascience/812

#DL #facebook #pythia #VQA #opensource
​​Release of 27 pretrained models for NLP / NLU for PyTorch

Hugging Face open sources a new library that contains up to 27 pretrained models to conduct state-of-the-art NLP/NLU tasks.

Link: https://medium.com/dair-ai/pytorch-transformers-for-state-of-the-art-nlp-3348911ffa5b

#SOTA #NLP #NLU #PyTorch #opensource
​​HiPlot: High-dimensional interactive plots made easy

Interactive parameters' performance #visualization tool. This new Facebook AI's release enables researchers to more easily evaluate the influence of their hyperparameters, such as learning rate, regularizations, and architecture.

Link: https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy
Github: https://github.com/facebookresearch/hiplot
Demo: https://facebookresearch.github.io/hiplot/_static/demo/demo_basic_usage.html
Pip: pip install hiplot

#hyperopt #facebook #opensource
​​Ultimate post on where to start learning DS

Most common request we received through the years was to share insights and advices on how to start career in data science and to recommend decent cources. Apparently, using hashtag #wheretostart wasn't enough so we were sharing some general advices.

So we assembled a through guide on how to start learning machine learning and created another #ultimatepost (in a form of a github repo, so it will be keep updated and anyone can submit worthy piece of advice to it).

We welcome you to share your stories and advices on how to start rolling into data science, as well as to spread the link to the repo to those your friends who might benefit from it.

Link: Ultimate post

#entrylevel #beginner #junior #MOOC #learndatascience #courses #mlcourse #opensource
🦜 Hi!

We are the first Telegram Data Science channel.


Channel was started as a collection of notable papers, news and releases shared for the members of Open Data Science (ODS) community. Through the years of just keeping the thing going we grew to an independent online Media supporting principles of Free and Open access to the information related to Data Science.


Ultimate Posts

* Where to start learning more about Data Science. https://github.com/open-data-science/ultimate_posts/tree/master/where_to_start
* @opendatascience channel audience research. https://github.com/open-data-science/ods_channel_stats_eda


Open Data Science

ODS.ai is an international community of people anyhow related to Data Science.

Website: https://ods.ai



Hashtags

Through the years we accumulated a big collection of materials, most of them accompanied by hashtags.

#deeplearning #DL — post about deep neural networks (> 1 layer)
#cv — posts related to Computer Vision. Pictures and videos
#nlp #nlu — Natural Language Processing and Natural Language Understanding. Texts and sequences
#audiolearning #speechrecognition — related to audio information processing
#ar — augmeneted reality related content
#rl — Reinforcement Learning (agents, bots and neural networks capable of playing games)
#gan #generation #generatinveart #neuralart — about neural artt and image generation
#transformer #vqgan #vae #bert #clip #StyleGAN2 #Unet #resnet #keras #Pytorch #GPT3 #GPT2 — related to special architectures or frameworks
#coding #CS — content related to software engineering sphere
#OpenAI #microsoft #Github #DeepMind #Yandex #Google #Facebook #huggingface — hashtags related to certain companies
#productionml #sota #recommendation #embeddings #selfdriving #dataset #opensource #analytics #statistics #attention #machine #translation #visualization


Chats

- Data Science Chat https://t.me/datascience_chat
- ODS Slack through invite form at website

ODS resources

* Main website: https://ods.ai
* ODS Community Telegram Channel (in Russian): @ods_ru
* ML trainings Telegram Channel: @mltrainings
* ODS Community Twitter: https://twitter.com/ods_ai

Feedback and Contacts

You are welcome to reach administration through telegram bot: @opendatasciencebot
Hi, our friends @mike0sv and @agusch1n just open-sourced MLEM - a tool that helps you deploy your ML models as part of the DVC ecosystem

It’s a Python library + Command line tool.

TLDR:
📦 MLEM can package an ML model into a Docker image or a Python package, and deploy it to Heroku (we made them promise to add SageMaker, K8s and Seldon-core soon :parrot:).

⚙️ MLEM saves all model metadata to a human-readable text file: Python environment, model methods, model input & output data schema and more.

💅 MLEM helps you turn your Git repository into a Model Registry with features like ML model lifecycle management.

Read more in release blogpost: https://dvc.org/blog/MLEM-release
Also, check out the project: https://github.com/iterative/mlem
And the website: https://mlem.ai

Guys are happy to hear your feedback, discuss how this could be helpful for you, how MLEM compares to MLflow, etc.
Ask in the comments!

#mlops #opensource #deployment #dvc
#opensource : RuLeanALBERT от Yandex Research
2.9B трансформер для русского, которая влезет в домашнюю ПеКарню ресерчера

Мало того, что это самая большая БЕРТ-подобная модель для русского языка, которая показывает крутые результаты в бенчмарках, так еще и с кодом для fine-tuning-а

GitHub

А в статье можете узнать, как обучалась эта модель (а-ля коллаборативное глубокое обучение) на фреймворке по децентрализованному обучению Hivemind