Data Science by ODS.ai 🦜
51K subscribers
363 photos
34 videos
7 files
1.52K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp
Download Telegram
​​πŸ₯‡Parameter optimization in neural networks.

Play with three interactive visualizations and develop your intuition for optimizing model parameters.

Link: https://www.deeplearning.ai/ai-notes/optimization/

#interactive #demo #optimization #parameteroptimization #novice #entrylevel #beginner #goldcontent #nn #neuralnetwork
​​And the Bit Goes Down: Revisiting the Quantization of Neural Networks

Researchers at Facebook AI Research found a way to compress neural networks with minimal sacrifice in accuracy.

Works only on fully connected and CNN only for now.

Link: https://arxiv.org/abs/1907.05686

#nn #DL #minimization #compresson
27,600 V100 GPUs, 0.5 PB data, and a neural net with 220,000,000 weights

If you wonder, it all was used to address scientific inverse problem in materials imaging.

ArXiV: https://arxiv.org/pdf/1909.11150.pdf

#ItIsNotAboutSize #nn #dl
Applying deep learning to Airbnb search

Story of how #Airbnb research team moved from using #GBDT (gradient boosting) to #NN (neural networks) for search, with all the metrics and hypothesises.

Link: https://blog.acolyer.org/2019/10/09/applying-deep-learning-to-airbnb-search/
Free eBook from Stanford: Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares

Base material you need to understand how neural networks and other #ML algorithms work.

Link: https://web.stanford.edu/~boyd/vmls/

#Stanford #MOOC #WhereToStart #free #ebook #algebra #linalg #NN
​​Characterising Bias in Compressed Models

Popular compression techniques turned out to amplify bias in deep neural networks.

ArXiV: https://arxiv.org/abs/2010.03058

#NN #DL #bias
Towards Causal Representation Learning

Work on how neural networks derive casual variables from low-level observations.

Link: https://arxiv.org/abs/2102.11107

#casuallearning #bengio #nn #DL
Deep Neural Nets: 33 years ago and 33 years from now

Great post by Andrej Karpathy on the progress #CV made in 33 years.

Author's ideas on what would a time traveler from 2055 think about the performance of current networks:

* 2055 neural nets are basically the same as 2022 neural nets on the macro level, except bigger.
* Our datasets and models today look like a joke. Both are somewhere around 10,000,000X larger.
* One can train 2022 state of the art models in ~1 minute by training naively on their personal computing device as a weekend fun project.
* Today’s models are not optimally formulated, and just changing some of the details of the model, loss function, augmentation or the optimizer we can about halve the error.
* Our datasets are too small, and modest gains would come from scaling up the dataset alone.
* Further gains are actually not possible without expanding the computing infrastructure and investing into some R&D on effectively training models on that scale.


Website: https://karpathy.github.io/2022/03/14/lecun1989/
OG Paper link: http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

#karpathy #archeology #cv #nn