Хабр / ML & AI
474 subscribers
5.43K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Как устроено пространство, в котором думают языковые модели?

С момента выхода первой статьи «Attention is All You Need» я с жадностью и любопытством, присущими любому исследователю, пытаюсь углубиться во все особенности и свойства моделей на базе архитектуры трансформер. Но, если честно, я до сих пор не понимаю, как они работают и почему так хорошо обучаются. Очень хочу разобраться, в чём же причина такой эффективности этих моделей, и есть ли предел их возможностей?

Такому изучению трансформеров «под микроскопом» и посвящена наша научная работа, только что представленная на конференции EACL 2024, которая проходила на Мальте — «The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models». В этой работе мы сфокусировались на наблюдении за пространством эмбеддингов (активаций) на промежуточных слоях по мере обучения больших и маленьких языковых моделей (LM) и получили очень интересные результаты.

Итак, приступим!

Читать далее

#transformers #deep_learning #topology #machine_learning #llama #gpt #llm #language_model | @habr_ai
Потоковая фильтрация CommonCrawl с Apache Spark для обучения языковых моделей

Для обработки Common Crawl на терабайтных объёмах широко используются архитектуры обработки данных, построенные на фреймворках вроде Apache Spark. Благодаря распределённой обработке данных и структурированному стримингу Spark позволяет разработчикам создавать масштабируемые пайплайны, применять логику фильтрации и формировать итоговые очищенные корпусы для обучения. Эта статья перевод моей статьи на medium.com, я хотел рассматреть, как на практике формируются обучающие наборы из Common Crawl (например, в проектах C4, CCNet, OSCAR, GPT-3, BLOOM, Falcon и др.), а затем показать пример Spark Streaming-приложения, который я написал и опубликовал в GitHub. Мы также приводим пример подхода, реализованного в DeepSeek, для фильтрации математического контента — узкоспециализированная задача, которая способна дать существенный прирост в качестве моделей. Читать далее

#common_crawl #apache_spark #language_model | @habr_ai
Оптимизация нейронных сетей для AI — переводчика

Всем привет! Меня зовут Алексей Рудак, и я – основатель компании Lingvanex, которая уже 8 лет занимается решениями в области машинного перевода и транскрипции речи. 

В этой статье рассматриваются несколько подходов, которые помогают повысить эффективность и качество языковых моделей для перевода. В качестве основы для тренировки моделей мы используем OpenNMT-tf.

Мы поговорим о методах, которые способствуют постепенной настройке параметров модели, что может привести к более стабильным процессам обучения. Эти техники позволяют тонко настроить процесс обновления весов модели, что улучшает сходимость и в конечном итоге дает лучшие результаты.

Кроме того, в статье обсуждаются стратегии управления темпами обучения, которые играют ключевую роль в том, насколько быстро модель обучается. Понимание того, как правильно корректировать темп обучения с течением времени, может существенно повлиять на динамику обучения и сделать модели более быстрыми и точными.

Наконец, мы затронем важность управления контрольными точками, что позволяет эффективнее использовать обученные модели, усредняя веса из нескольких сессий обучения. Это помогает снизить риск переобучения и обеспечивает сохранение лучших характеристик модели, приобретенных в процессе обучения. Читать далее

#машинное_обучение #machinelearning #translator #ai #language_model #deeplearning #машинный_перевод #языковые_модели #нейросети #искусственный_интеллект | @habr_ai
Исправляем опечатки с учётом контекста

Недавно мне понадобилась библиотека для исправления опечаток. Большинство открытых спелл-чекеров (к примеру hunspell) не учитывают контекст, а без него сложно получить хорошую точность. Я взял за основу спеллчекер Питера Норвига, прикрутил к нему языковую модель (на базе N-грамм), ускорил его (используя подход SymSpell), поборол сильное потребление памяти (через bloom filter и perfect hash) а затем оформил всё это в виде библиотеки на C++ со swig биндингами для других языков. Читать дальше →

#nlp #spellcheck #spellchecker #perfect_hash_function #bloom_filter #ngram #n_gram #n_граммы #language_model | @habr_ai