Как мы строим real-time data-пайплайны для анонимных крипто-свапалок: опыт на примере risetocrypto
В мире криптовалют анонимность и безопасность являются ключевыми элементами. Когда речь идет о крипто-свапалках, эффективность обработки данных в реальном времени играет решающую роль для обеспечения высокого качества сервиса. В этой статье расскажем, как мы реализовали масштабируемую архитектуру для обработки данных на платформе risetocrypto с использованием передовых технологий. Читать далее
#big_data #kafka #apache_flink #machine_learning #blockchain #data_engineering #real_time_processing #security_analytics #slippage_monitoring #clickhouse | @habr_ai
В мире криптовалют анонимность и безопасность являются ключевыми элементами. Когда речь идет о крипто-свапалках, эффективность обработки данных в реальном времени играет решающую роль для обеспечения высокого качества сервиса. В этой статье расскажем, как мы реализовали масштабируемую архитектуру для обработки данных на платформе risetocrypto с использованием передовых технологий. Читать далее
#big_data #kafka #apache_flink #machine_learning #blockchain #data_engineering #real_time_processing #security_analytics #slippage_monitoring #clickhouse | @habr_ai
Хабр
Как мы строим real-time data-пайплайны для анонимных крипто-свапалок: опыт на примере risetocrypto
В мире криптовалют анонимность и безопасность являются ключевыми элементами. Когда речь идет о крипто-свапалках, эффективность обработки данных в реальном времени играет решающую роль для обеспечения...
Когда LLM — это не чат, а мозг: путь к VLA‑архитектуре
В 2024 году большие языковые модели (LLM) внезапно начали дешифровать хаос реального мира: распознавать объекты, объяснять намерения и даже писать код для микроконтроллеров. Для робототехники это стало тем же, чем Li‑ion стал для ноутбуков — мгновенным ускорителем эволюции.
LLM открыли окно возможностей: вместо того чтобы вручную программировать каждую задачу, мы можем дать роботу текстовую инструкцию, а он сам разберётся, какие навыки подключить.
Vision‑Language Agents, RLHF, MPC… В робототехнике сегодня аббревиатур больше, чем сервоприводов в суставе. Разобраться, что скрывает каждая комбинация букв, — ключ к тому, чтобы не остаться сторонним наблюдателем в союзе железа и ИИ.
В этой статье я делюсь своим взглядом на ряд актуальных вопросов:
— чем GPT‑мозг круче старой цепочки perception → planning → control;
— зачем скрещивать Classic Stack, RL‑контроллеры и VLA вместо того, чтобы выбирать лучший;
— как можно прокачать робота от базовых движений до уверенной работы офис‑ассистентом, охранником и курьером.
Погрузитесь в детали — и посмотрите, как будущее шагает к нам на двух механических ногах. Читать далее
#яндекс #machine_learning #llm #humanoid #robotics | @habr_ai
В 2024 году большие языковые модели (LLM) внезапно начали дешифровать хаос реального мира: распознавать объекты, объяснять намерения и даже писать код для микроконтроллеров. Для робототехники это стало тем же, чем Li‑ion стал для ноутбуков — мгновенным ускорителем эволюции.
LLM открыли окно возможностей: вместо того чтобы вручную программировать каждую задачу, мы можем дать роботу текстовую инструкцию, а он сам разберётся, какие навыки подключить.
Vision‑Language Agents, RLHF, MPC… В робототехнике сегодня аббревиатур больше, чем сервоприводов в суставе. Разобраться, что скрывает каждая комбинация букв, — ключ к тому, чтобы не остаться сторонним наблюдателем в союзе железа и ИИ.
В этой статье я делюсь своим взглядом на ряд актуальных вопросов:
— чем GPT‑мозг круче старой цепочки perception → planning → control;
— зачем скрещивать Classic Stack, RL‑контроллеры и VLA вместо того, чтобы выбирать лучший;
— как можно прокачать робота от базовых движений до уверенной работы офис‑ассистентом, охранником и курьером.
Погрузитесь в детали — и посмотрите, как будущее шагает к нам на двух механических ногах. Читать далее
#яндекс #machine_learning #llm #humanoid #robotics | @habr_ai
Хабр
Когда LLM — это не чат, а мозг: путь к VLA‑архитектуре
В 2024 году большие языковые модели (LLM) внезапно начали дешифровать хаос реального мира: распознавать объекты, объяснять намерения и даже писать код для микроконтроллеров....
Как автоматизировать обучение ML-моделей и сократить время вывода в прод до двух дней
В прошлой статье мы говорили о подходе к рекомендации сервисов на основании автоматизации расчета склонностей клиентов и единого репозитория предложений. В ней мы углубились в создание репозитория, описание логики категоризации и набора в кампании для коммуникации с клиентами. Сегодня мы подробнее расскажем про наш подход к автоматизации построения и вывода в прод набора моделей. Читать далее
#data_science #machine_learning #automl #feature_store #automatization | @habr_ai
В прошлой статье мы говорили о подходе к рекомендации сервисов на основании автоматизации расчета склонностей клиентов и единого репозитория предложений. В ней мы углубились в создание репозитория, описание логики категоризации и набора в кампании для коммуникации с клиентами. Сегодня мы подробнее расскажем про наш подход к автоматизации построения и вывода в прод набора моделей. Читать далее
#data_science #machine_learning #automl #feature_store #automatization | @habr_ai
Хабр
Как автоматизировать обучение ML-моделей и сократить время вывода в прод до двух дней
В прошлой статье мы говорили о подходе к рекомендации сервисов на основании автоматизации расчета склонностей клиентов и единого репозитория предложений. В ней мы углубились в создание репозитория,...
Правда ли KAN лучше MLP? Свойство разделения глубины между двумя архитектурами
Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?
В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной Читать далее
#kan #mlp #approximation #math #machine_learning #deep_learning #science #neural_networks #research | @habr_ai
Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). На момент выхода статьи про KAN эта новость произвела фурор в мире машинного обучение, так как KAN показывала существенный прирост в качестве аппроксимации различных сложных функций. Ошибка новых сетей падает значительно быстрее при увеличении числа параметров. Однако, за все приходится платить, и цена таких маленьких значений функции ошибки - медленное обучение: KAN обучается примерно в 10 раз медленнее, чем старый добрый MLP. Из всего этого возникает вопрос: насколько все же уместно использование новой архитектуры вместо привычных всем MLP?
В данной статье будет найдена функция, которая может быть реализована с помощью двухслойного KAN полиномиальной ширины, но не может быть приближена никакой двухслойной ReLU MLP сетью с полиномиальной шириной Читать далее
#kan #mlp #approximation #math #machine_learning #deep_learning #science #neural_networks #research | @habr_ai
Хабр
Правда ли KAN лучше MLP? Свойство разделения глубины между двумя архитектурами
Введение Прошлым летом в свет вышла новая архитектура нейронных сетей под названием Kolmogorov-Arnold Networks (KAN). Основная статья есть в открытом доступе на архиве по следующей ссылке . На момент...
Как мы разработали гибкий пайплайн для прогноза временных рядов любых метрик
Практически каждый ML‑разработчик сталкивался с прогнозированием временных рядов, ведь окружающие нас сущности и метрики зачастую зависят от времени.
Меня зовут Александр Елизаров, я работаю в группе аналитики ключевых показателей в бизнес‑группе Поиска и рекламных технологий. В течение нескольких лет нам приходилось прогнозировать большое количество временных рядов разных доменных областей: от поисковой доли Яндекса до DAU определённых сервисов. Чтобы успешно справляться с этой задачей, мы вместе с коллегами разработали собственный прогнозный фреймворк. В этой статье я расскажу, как создать универсальный и гибкий пайплайн для прогнозирования. Под катом рассмотрим:
— правильно выстроенную иерархию данных;
— методы консистентного предсказания абсолютных и относительных метрик;
— частые проблемы моделей и то, как мы их фиксили;
— а также все важные этапы, о которых нельзя забывать, когда работаешь с временными рядами. Читать далее
#machine_learning #яндекс #временные_ряды #машинное_обучение #аналитика_данных #анализ_данных | @habr_ai
Практически каждый ML‑разработчик сталкивался с прогнозированием временных рядов, ведь окружающие нас сущности и метрики зачастую зависят от времени.
Меня зовут Александр Елизаров, я работаю в группе аналитики ключевых показателей в бизнес‑группе Поиска и рекламных технологий. В течение нескольких лет нам приходилось прогнозировать большое количество временных рядов разных доменных областей: от поисковой доли Яндекса до DAU определённых сервисов. Чтобы успешно справляться с этой задачей, мы вместе с коллегами разработали собственный прогнозный фреймворк. В этой статье я расскажу, как создать универсальный и гибкий пайплайн для прогнозирования. Под катом рассмотрим:
— правильно выстроенную иерархию данных;
— методы консистентного предсказания абсолютных и относительных метрик;
— частые проблемы моделей и то, как мы их фиксили;
— а также все важные этапы, о которых нельзя забывать, когда работаешь с временными рядами. Читать далее
#machine_learning #яндекс #временные_ряды #машинное_обучение #аналитика_данных #анализ_данных | @habr_ai
Хабр
Как мы разработали гибкий пайплайн для прогноза временных рядов любых метрик
Практически каждый ML‑разработчик сталкивался с прогнозированием временных рядов, ведь окружающие нас сущности и метрики зачастую зависят от времени. Меня зовут Александр Елизаров, я работаю...
От мозга к мультиагентным системам: как устроены Foundation Agents нового поколения
Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей AI из передовых международных университетов и технологических компаний.
Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем. Читать далее
#ai #machine_learning #deep_learning #large_language_models #multi_agent_systems #reinforcement_learning #prompt_engineering #rag #alignment #jailbreak | @habr_ai
Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей AI из передовых международных университетов и технологических компаний.
Работа предлагает новый взгляд на текущее состояние и развитие «интеллектуальных агентов», которые могут адаптироваться к множеству задач и контекстов. Рассказываем, какие идеи лежат в основе Foundation Agents, с какими проблемами предстоит столкнуться, и что ждёт нас в будущем. Читать далее
#ai #machine_learning #deep_learning #large_language_models #multi_agent_systems #reinforcement_learning #prompt_engineering #rag #alignment #jailbreak | @habr_ai
Хабр
От мозга к мультиагентным системам: как устроены Foundation Agents нового поколения
Аналитический центр red_mad_robot разобрал объёмную научную статью «Advances and Challenges in Foundation Agents» от группы исследователей из передовых международных университетов и технологических...
Неделя в российском AI: от управления «мыслями» нейросетей до победы человека над ИИ
Собрали главные события недели с 21 по 26 июля 2025 года в российском AI-сегменте: технические прорывы, корпоративные внедрения и неожиданные результаты соревнований человека с машиной. Читать далее
#искусственный_интеллект #машинное_обучение #llm #табличные_данные #промышленная_автоматизация #machine_learning | @habr_ai
Собрали главные события недели с 21 по 26 июля 2025 года в российском AI-сегменте: технические прорывы, корпоративные внедрения и неожиданные результаты соревнований человека с машиной. Читать далее
#искусственный_интеллект #машинное_обучение #llm #табличные_данные #промышленная_автоматизация #machine_learning | @habr_ai
Хабр
Неделя в российском AI: от управления «мыслями» нейросетей до победы человека над ИИ
Собрали главные события недели с 21 по 26 июля 2025 года в российском AI-сегменте: технические прорывы, корпоративные внедрения и неожиданные результаты соревнований человека с машиной. TabM от Yandex...
Как мы обучали модели для кода GigaCode
Привет, Хабр! Меня зовут Дмитрий Бабаев, я руководитель R&D GigaCode в Сбере. Сегодня расскажу о том, как мы создавали ИИ-помощника для программистов задолго до того, как это стало мейнстримом.
Многие компании думают о том, чтобы выпустить собственного ИИ-помощника для разработчиков. Мы начали делать GigaCode около трех лет назад — ещё до появления Cursor и других популярных сегодня решений.
За это время мы создали целую экосистему решений для разработки – GigaDEV: IDE на основе IntelliJ, платформу Gitverse как аналог GitHub и сам GigaCode. Читать далее
#llm #code_assistant #machine_learning #code_generation | @habr_ai
Привет, Хабр! Меня зовут Дмитрий Бабаев, я руководитель R&D GigaCode в Сбере. Сегодня расскажу о том, как мы создавали ИИ-помощника для программистов задолго до того, как это стало мейнстримом.
Многие компании думают о том, чтобы выпустить собственного ИИ-помощника для разработчиков. Мы начали делать GigaCode около трех лет назад — ещё до появления Cursor и других популярных сегодня решений.
За это время мы создали целую экосистему решений для разработки – GigaDEV: IDE на основе IntelliJ, платформу Gitverse как аналог GitHub и сам GigaCode. Читать далее
#llm #code_assistant #machine_learning #code_generation | @habr_ai
Хабр
Как мы обучали модели для кода GigaCode
Привет, Хабр Меня зовут Дмитрий Бабаев, я руководитель R&D GigaCode в Сбере. Сегодня расскажу о том, как мы создавали ИИ‑помощника для программистов задолго до того,...
Автоматизированная оценка стабильности скоринговых моделей на основе временных рядов метрик
Привет, Хабр! Меня зовут Зотов Глеб, я ML-инженер в команде скоринга в билайне. В статье расскажу о том, как не сойти с ума, мониторя десятки графиков вручную.
Скоринговая модель может быть блестящей на этапе обучения, показывать отличные значения всех метрик на кросс-валидации и радовать бизнес на первых неделях после деплоя. Но вжух — и через два месяца валидационные метрики поползли вниз, отклонения по PSI зашкаливают, а product owner уже поглядывает в твою сторону с подозрением.
Проблема? Проблема.
Давайте разберемся, почему так происходит и как можно этого избежать. Читать далее
#time_series_analysis #psi #optimization #automatization #machine_learning #feature_stability #model_stability #data_drift #stability_metrics | @habr_ai
Привет, Хабр! Меня зовут Зотов Глеб, я ML-инженер в команде скоринга в билайне. В статье расскажу о том, как не сойти с ума, мониторя десятки графиков вручную.
Скоринговая модель может быть блестящей на этапе обучения, показывать отличные значения всех метрик на кросс-валидации и радовать бизнес на первых неделях после деплоя. Но вжух — и через два месяца валидационные метрики поползли вниз, отклонения по PSI зашкаливают, а product owner уже поглядывает в твою сторону с подозрением.
Проблема? Проблема.
Давайте разберемся, почему так происходит и как можно этого избежать. Читать далее
#time_series_analysis #psi #optimization #automatization #machine_learning #feature_stability #model_stability #data_drift #stability_metrics | @habr_ai
Хабр
Автоматизированная оценка стабильности скоринговых моделей на основе временных рядов метрик
Привет, Хабр! Меня зовут Зотов Глеб, я ML-инженер в команде скоринга в билайне. В статье расскажу о том, как не сойти с ума, мониторя десятки графиков вручную. Скоринговая модель может быть...
Koda: AI-помощник разработчика – бесплатно, без VPN, с поддержкой русского языка
Индустрия ИИ переживает рекордный бум: каждую неделю появляются новые модели, а заголовки пестрят новостями о многомиллионных контрактах и громких переходах звёздных исследователей. Прорывы происходят на всех уровнях: от чипов и инфраструктуры (NVIDIA и др.) до моделей и инструментов вроде Cursor или Windsurf.
Но у российских разработчиков выбор заметно ýже: ограничения, VPN, трудности с оплатой. Мы решили это изменить и создали Koda — AI-помощника, который доступен бесплатно и без VPN, работает с современными моделями и привычными функциями: автодополнение кода, чат, поиск по документации и коду проекта, а также агентный режим! Читать далее
#koda #llm #ai #copilot #ai_инструменты #вайб_кодинг #агент #vibecoding #data_science #machine_learning | @habr_ai
Индустрия ИИ переживает рекордный бум: каждую неделю появляются новые модели, а заголовки пестрят новостями о многомиллионных контрактах и громких переходах звёздных исследователей. Прорывы происходят на всех уровнях: от чипов и инфраструктуры (NVIDIA и др.) до моделей и инструментов вроде Cursor или Windsurf.
Но у российских разработчиков выбор заметно ýже: ограничения, VPN, трудности с оплатой. Мы решили это изменить и создали Koda — AI-помощника, который доступен бесплатно и без VPN, работает с современными моделями и привычными функциями: автодополнение кода, чат, поиск по документации и коду проекта, а также агентный режим! Читать далее
#koda #llm #ai #copilot #ai_инструменты #вайб_кодинг #агент #vibecoding #data_science #machine_learning | @habr_ai
Хабр
Koda: AI-помощник разработчика – бесплатно, без VPN, с поддержкой русского языка
Индустрия ИИ переживает рекордный бум: каждую неделю появляются новые модели, а заголовки пестрят новостями о многомиллионных контрактах и громких переходах звёздных исследователей. Прорывы происходят...
Semantic Retrieval-Augmented Contrastive Learning (SRA-CL) для последовательных рекомендательных систем: обзор
👋 Привет, Хабр!
Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.
До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле и нейротехе.
Сегодня я хотел бы поговорить о том, как большие языковые модели могут починить контрастивное обучение в рекомендательных системах. Контрастивные методы давно стали стандартом в NLP и CV, но в последовательных рекомендациях они работают далеко не идеально: данные разрежены, а аугментации часто искажают смысл вместо того, чтобы его сохранять. Авторы свежей статьи с arXiv — “Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation (SRA-CL)” — предлагают элегантное решение: использовать LLM для генерации семантически осмысленных позитивных пар. Звучит просто, но даёт заметный прирост качества — давайте разберёмся, как именно это работает. Читать далее
#recsys #data_science #machine_learning #transformers | @habr_ai
👋 Привет, Хабр!
Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.
До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле и нейротехе.
Сегодня я хотел бы поговорить о том, как большие языковые модели могут починить контрастивное обучение в рекомендательных системах. Контрастивные методы давно стали стандартом в NLP и CV, но в последовательных рекомендациях они работают далеко не идеально: данные разрежены, а аугментации часто искажают смысл вместо того, чтобы его сохранять. Авторы свежей статьи с arXiv — “Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation (SRA-CL)” — предлагают элегантное решение: использовать LLM для генерации семантически осмысленных позитивных пар. Звучит просто, но даёт заметный прирост качества — давайте разберёмся, как именно это работает. Читать далее
#recsys #data_science #machine_learning #transformers | @habr_ai
Хабр
Semantic Retrieval-Augmented Contrastive Learning (SRA-CL) для sequential рекомендательных систем: обзор
👋 Привет, Хабр! Меня зовут Никита Горячев, я Research Engineer в WB , последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей . Каждый день мы обрабатываем миллиарды событий, а...
❤1
Shap-графики: как наглядно объяснить заказчику логику работы модели
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ.
В этой статье расскажу о том, какие на мой взгляд типы графиков необходимо построить, чтобы наиболее оптимальным образом показать заказчику логику работы фичей в моделях. Читать далее
#shap #machine_learning #catboost #data_science #python #моделирование | @habr_ai
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ.
В этой статье расскажу о том, какие на мой взгляд типы графиков необходимо построить, чтобы наиболее оптимальным образом показать заказчику логику работы фичей в моделях. Читать далее
#shap #machine_learning #catboost #data_science #python #моделирование | @habr_ai
Хабр
Shap-графики: как наглядно объяснить заказчику логику работы модели
Всем привет. Я Андрей Бояренков, лидер кластера бизнес-моделей стрима "Разработка моделей КИБ и СМБ" банка ВТБ. Наш кластер отвечает за: выстраивание и внедрение процессов AutoML, за разработку...
Как внедрить автоматическое ревью кода с помощью ИИ: опыт Microsoft, Google и ByteDance + практическое руководство
TL;DR
Автоматическое ревью кода с помощью ИИ уже работает в продакшене крупнейших компаний. Microsoft обрабатывает 600 000 пулл-реквестов в месяц, экономя сотни тысяч часов. ByteDance достигла 75% точности с 12 000 активных пользователей еженедельно. Google автоматизировал 7,5% всех комментариев ревьюеров. В статье — детальный разбор архитектур, метрики эффективности и пошаговое руководство по внедрению с расчётом окупаемости. Читать далее
#artificial_intelligence #code_review #devops #machine_learning #github #cicd #software_engineering #software_development #automation | @habr_ai
TL;DR
Автоматическое ревью кода с помощью ИИ уже работает в продакшене крупнейших компаний. Microsoft обрабатывает 600 000 пулл-реквестов в месяц, экономя сотни тысяч часов. ByteDance достигла 75% точности с 12 000 активных пользователей еженедельно. Google автоматизировал 7,5% всех комментариев ревьюеров. В статье — детальный разбор архитектур, метрики эффективности и пошаговое руководство по внедрению с расчётом окупаемости. Читать далее
#artificial_intelligence #code_review #devops #machine_learning #github #cicd #software_engineering #software_development #automation | @habr_ai
Хабр
Как внедрить автоматическое ревью кода с помощью ИИ: опыт Microsoft, Google и ByteDance + практическое руководство
Ревью кода с помощью AI в глазах автора Введение: почему это важно именно сейчас Представьте: ваш коллега тратит час на ревью вашего кода, находит пару опечаток и пропущенную проверку на null. Через...
Google снизил энергопотребление AI-запросов в 33 раза: что это значит для будущего ИИ
Искусственный интеллект давно вышел за рамки научной фантастики и стал частью нашей жизни — от поисковых систем до чат-ботов и голосовых помощников. Но у этого удобства есть немалая цена: для генерации ответа ИИ расходует значительные вычислительные ресурсы и энергию.
Правда, здесь разработчики современных языковых моделей тоже продвинулись. Недавно Google сообщил о впечатляющем результате: всего за год энергопотребление одного AI-запроса удалось снизить в 33 раза. Это не просто техническое достижение, а сигнал для всей индустрии, который может изменить подход к разработке и использованию ИИ. Давайте разберем, каким образом Google этого добился, какие технологии помогли и как это повлияет на будущее искусственного интеллекта. Читать далее
#искусственный_интеллект #машинное_обучение #машинное_обучение #machine_learning #высокая_производительность #google | @habr_ai
Искусственный интеллект давно вышел за рамки научной фантастики и стал частью нашей жизни — от поисковых систем до чат-ботов и голосовых помощников. Но у этого удобства есть немалая цена: для генерации ответа ИИ расходует значительные вычислительные ресурсы и энергию.
Правда, здесь разработчики современных языковых моделей тоже продвинулись. Недавно Google сообщил о впечатляющем результате: всего за год энергопотребление одного AI-запроса удалось снизить в 33 раза. Это не просто техническое достижение, а сигнал для всей индустрии, который может изменить подход к разработке и использованию ИИ. Давайте разберем, каким образом Google этого добился, какие технологии помогли и как это повлияет на будущее искусственного интеллекта. Читать далее
#искусственный_интеллект #машинное_обучение #машинное_обучение #machine_learning #высокая_производительность #google | @habr_ai
Хабр
Google снизил энергопотребление AI-запросов в 33 раза: что это значит для будущего ИИ
Искусственный интеллект давно вышел за рамки научной фантастики и стал частью нашей жизни — от поисковых систем до чат-ботов и голосовых помощников. Но у этого удобства есть немалая цена: для...
Ученые научились «расшифровывать» внутренний голос человека. Приватности конец?
Представьте, что ваши мысли, которые вы проговариваете про себя, переводятся в текст на экране. Без единого слова и движений губ — просто сигналы мозга, пойманные и расшифрованные. Как-то не по себе, не так ли? Между тем это не сюжет фантастического фильма, а реальность, созданная учеными из Стэнфордского университета: они разработали нейроинтерфейс, способный услышать «внутренний голос».
Технология может помочь людям, потерявшим возможность говорить, и открыть новые способы взаимодействия с компьютерами. Но вместе с перспективами появляются и риски: не окажутся ли мысли человека, которые он не собирался озвучивать, доступными для посторонних? Давайте обсудим. Читать далее
#мозг #искусственный_интеллект #машинное_обучение #будущее_здесь #machine_learning #научно_популярное | @habr_ai
Представьте, что ваши мысли, которые вы проговариваете про себя, переводятся в текст на экране. Без единого слова и движений губ — просто сигналы мозга, пойманные и расшифрованные. Как-то не по себе, не так ли? Между тем это не сюжет фантастического фильма, а реальность, созданная учеными из Стэнфордского университета: они разработали нейроинтерфейс, способный услышать «внутренний голос».
Технология может помочь людям, потерявшим возможность говорить, и открыть новые способы взаимодействия с компьютерами. Но вместе с перспективами появляются и риски: не окажутся ли мысли человека, которые он не собирался озвучивать, доступными для посторонних? Давайте обсудим. Читать далее
#мозг #искусственный_интеллект #машинное_обучение #будущее_здесь #machine_learning #научно_популярное | @habr_ai
Хабр
Ученые научились «расшифровывать» внутренний голос человека. Приватности конец?
Представьте, что ваши мысли, которые вы проговариваете про себя, переводятся в текст на экране. Без единого слова и движений губ — просто сигналы мозга, пойманные и расшифрованные. Как-то не по себе,...
[Перевод] Claude Code: лучшие практики агентного программирования
Иногда действительно лучше промолчать, чем писать что-то ради «галочки». На днях мы в команде вспомнили о методичке Anthropic по Claude Code и поняли — добавить к ней практически нечего, конечно, кроме наших советов об использовании этого инструмента. Все подходы, которые появились у нас с помощью этой практики, теперь вошли в официальные гайды лидеров в области ИИ-агентов.
В общем, если вы хотите разобраться в агентном программировании — не проходите мимо этого перевода с комментариями руководителя отдела Flutter-разработки Surf Марка. Читать дальше
#claude #claude_code #ии #ии_агенты #агентное_программирование #автоматизация #bash #ai #machine_learning #ml | @habr_ai
Иногда действительно лучше промолчать, чем писать что-то ради «галочки». На днях мы в команде вспомнили о методичке Anthropic по Claude Code и поняли — добавить к ней практически нечего, конечно, кроме наших советов об использовании этого инструмента. Все подходы, которые появились у нас с помощью этой практики, теперь вошли в официальные гайды лидеров в области ИИ-агентов.
В общем, если вы хотите разобраться в агентном программировании — не проходите мимо этого перевода с комментариями руководителя отдела Flutter-разработки Surf Марка. Читать дальше
#claude #claude_code #ии #ии_агенты #агентное_программирование #автоматизация #bash #ai #machine_learning #ml | @habr_ai
Хабр
Claude Code: лучшие практики агентного программирования
Иногда действительно лучше промолчать, чем писать что-то ради «галочки». На днях мы в команде вспомнили о методичке Anthropic по Claude Code и поняли — добавить к ней практически нечего,...
Многозадачные и интеллектуальные. Как мы обучали колонки Sber понимать сразу несколько команд умного дома
Салют, Хабр!
Я Иван, в SberDevices я руковожу направлением голосового управления умным домом. Сегодня выпустили большое обновление — теперь взаимодействие пользователя с Умным домом Sber через умные колонки стало проще и удобнее. Колонке можно одной репликой дать сразу несколько команд; можно управлять освещением и климатом нативными командами — сказать: «Салют, мне темно», чтобы включился свет. Ещё появилась возможность создавать сценарии с помощью GigaChat: если сказать умной колонке: «Салют, я проснулся», она предложит варианты действий с устройствами умного дома: включить свет? Открыть шторы? Когда вы подтвердили выбор, колонка сама создаст в приложении сценарий.
Благодаря обновлению пользователю стало проще и органичнее управлять умным домом. В этой статье расскажу, как мы реализовали многозадачность в умных колонках. Читать далее
#умные_колонки #умный_дом #искусство_программирования #gigachat #ml #machine_learning | @habr_ai
Салют, Хабр!
Я Иван, в SberDevices я руковожу направлением голосового управления умным домом. Сегодня выпустили большое обновление — теперь взаимодействие пользователя с Умным домом Sber через умные колонки стало проще и удобнее. Колонке можно одной репликой дать сразу несколько команд; можно управлять освещением и климатом нативными командами — сказать: «Салют, мне темно», чтобы включился свет. Ещё появилась возможность создавать сценарии с помощью GigaChat: если сказать умной колонке: «Салют, я проснулся», она предложит варианты действий с устройствами умного дома: включить свет? Открыть шторы? Когда вы подтвердили выбор, колонка сама создаст в приложении сценарий.
Благодаря обновлению пользователю стало проще и органичнее управлять умным домом. В этой статье расскажу, как мы реализовали многозадачность в умных колонках. Читать далее
#умные_колонки #умный_дом #искусство_программирования #gigachat #ml #machine_learning | @habr_ai
Хабр
Многозадачные и интеллектуальные. Как мы обучали колонки Sber понимать сразу несколько команд умного дома
Салют, Хабр! Я Иван, в SberDevices я руковожу направлением голосового управления умным домом. Сегодня выпустили большое обновление — теперь взаимодействие пользователя с Умным домом Sber через умные...
[Перевод] Скорость, стратегия и алгоритмы: будущее Формулы-1 в эпоху AI
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения.
От стратегии по выбору шин до аэродинамического дизайна — эти технологии меняют то, как команды планируют работу, реагируют на вызовы и развиваются. Они не заменяют человеческих специалистов, принимающих решения, но трансформируют набор инструментов, с которыми ведут борьбу за результат. Читать далее
#formula_1 #ai #machinelearning #machine_learning #reinforcement_learning #pca #cfd #cfd_моделирование #generative_design #ии | @habr_ai
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения.
От стратегии по выбору шин до аэродинамического дизайна — эти технологии меняют то, как команды планируют работу, реагируют на вызовы и развиваются. Они не заменяют человеческих специалистов, принимающих решения, но трансформируют набор инструментов, с которыми ведут борьбу за результат. Читать далее
#formula_1 #ai #machinelearning #machine_learning #reinforcement_learning #pca #cfd #cfd_моделирование #generative_design #ии | @habr_ai
Хабр
Скорость, стратегия и алгоритмы: будущее Формулы-1 в эпоху AI
Формула-1 всегда была местом пересечения инженерии и инноваций. В последние годы эта область инноваций расширилась за счёт внедрения искусственного интеллекта и машинного обучения. От стратегии по...
Методы интерпретации на основе вмешательства в CV: RISE implementation
Привет, друзья! Добро пожаловать в новый туториал из серии практических материалов по explanable AI (интерпретируемости моделей). Он посвящен методу интерпретации на основе вмешательства — RISE. В этом материале разобрана теоретическая постановка метода, подчеркнуты красивые математические идеи и переходы, и, конечно, реализован код для практики. Приглашаю к чтению! Ноутбук к туториалу доступен на гитхаб. Читать далее
#машинное_обучение #интерпретируемый_ии #карты_активации #machine_learning #cnn | @habr_ai
Привет, друзья! Добро пожаловать в новый туториал из серии практических материалов по explanable AI (интерпретируемости моделей). Он посвящен методу интерпретации на основе вмешательства — RISE. В этом материале разобрана теоретическая постановка метода, подчеркнуты красивые математические идеи и переходы, и, конечно, реализован код для практики. Приглашаю к чтению! Ноутбук к туториалу доступен на гитхаб. Читать далее
#машинное_обучение #интерпретируемый_ии #карты_активации #machine_learning #cnn | @habr_ai
Хабр
Методы интерпретации на основе вмешательства в CV: RISE implementation
Привет, друзья! Добро пожаловать в новый туториал из серии практических материалов по explanable AI (интерпретируемости моделей). Он посвящен методу интерпретации на основе вмешательства — RISE....
Долгая дорога к DiT (часть 1)
Это лето обрадовало нас прорывом в обработке изображений с помощью нейросетей. Одна за другой выходят такие модели как Flux.1 Kontext, Qwen-Image-Edit, Gemini 2.4 Flash Image Preview (Nano Banana) демонстрируя недостижимый до сих пор уровень манипуляции цифровым контентом. Это не замена Фотошопу, а технология, открывающая врата в бесконечные визуальные миры и всё благодаря мощи архитектуры Diffusion Transformer (DiT). Впечатлившись, я решил поближе познакомиться с диффузными трансформерами - собственноручно натренировать свою собственную DiT-модель. Об этом и будет эта статья. Читать далее
#pytorch #machine_learning #искусственный_интеллект #diffusion_models | @habr_ai
Это лето обрадовало нас прорывом в обработке изображений с помощью нейросетей. Одна за другой выходят такие модели как Flux.1 Kontext, Qwen-Image-Edit, Gemini 2.4 Flash Image Preview (Nano Banana) демонстрируя недостижимый до сих пор уровень манипуляции цифровым контентом. Это не замена Фотошопу, а технология, открывающая врата в бесконечные визуальные миры и всё благодаря мощи архитектуры Diffusion Transformer (DiT). Впечатлившись, я решил поближе познакомиться с диффузными трансформерами - собственноручно натренировать свою собственную DiT-модель. Об этом и будет эта статья. Читать далее
#pytorch #machine_learning #искусственный_интеллект #diffusion_models | @habr_ai
Хабр
Долгая дорога к DiT (часть 1)
Это лето обрадовало нас прорывом в обработке изображений с помощью нейросетей. Одна за другой выходят такие модели как Flux.1 Kontext, Qwen-Image-Edit, Gemini 2.4 Flash Image Preview (Nano Banana)...