Исправляем опечатки с учётом контекста
Недавно мне понадобилась библиотека для исправления опечаток. Большинство открытых спелл-чекеров (к примеру hunspell) не учитывают контекст, а без него сложно получить хорошую точность. Я взял за основу спеллчекер Питера Норвига, прикрутил к нему языковую модель (на базе N-грамм), ускорил его (используя подход SymSpell), поборол сильное потребление памяти (через bloom filter и perfect hash) а затем оформил всё это в виде библиотеки на C++ со swig биндингами для других языков. Читать дальше →
#nlp #spellcheck #spellchecker #perfect_hash_function #bloom_filter #ngram #n_gram #n_граммы #language_model | @habr_ai
Недавно мне понадобилась библиотека для исправления опечаток. Большинство открытых спелл-чекеров (к примеру hunspell) не учитывают контекст, а без него сложно получить хорошую точность. Я взял за основу спеллчекер Питера Норвига, прикрутил к нему языковую модель (на базе N-грамм), ускорил его (используя подход SymSpell), поборол сильное потребление памяти (через bloom filter и perfect hash) а затем оформил всё это в виде библиотеки на C++ со swig биндингами для других языков. Читать дальше →
#nlp #spellcheck #spellchecker #perfect_hash_function #bloom_filter #ngram #n_gram #n_граммы #language_model | @habr_ai
Хабр
Исправляем опечатки с учётом контекста
Недавно мне понадобилась библиотека для исправления опечаток. Большинство открытых спелл-чекеров (к примеру hunspell) не учитывают контекст, а без него сложно получить хорошую точность. Я взял за...