You Only Look Once… But it Sees Everything! Обзор YOLO детекторов. Часть 1
Вступление
Детекция объектов в реальном времени является важнейшей задачей и охватывает большое количество областей, таких как беспилотные транспортные средства, робототехника, видеонаблюдение, дополненная реальность и многие другие. Сейчас такая задача решается с помощью двух типов алгоритмов: one-step алгоритм детекции, например You Only Look Once (YOLO), и two-steps алгоритм, например Faster Region-Based Convolutional Neural Network (Faster R-CNN). Двухстадийный подход имеет ряд недостатков: долгое обучение и инференс, плохое качество детекции маленьких объектов, неустойчивость к различным размерам входных данных. Одностадийный алгоритм детекции подразумевает одновременное выполнение детекции и классификации, что обеспечивает end-to-end обучение с сохранением высоких показателей как точности, так и скорости.
Читать далее
#детекция #yolo #computer_vision #detection #you_only_look_once #bounding_box #data_science | @habr_ai
Вступление
Детекция объектов в реальном времени является важнейшей задачей и охватывает большое количество областей, таких как беспилотные транспортные средства, робототехника, видеонаблюдение, дополненная реальность и многие другие. Сейчас такая задача решается с помощью двух типов алгоритмов: one-step алгоритм детекции, например You Only Look Once (YOLO), и two-steps алгоритм, например Faster Region-Based Convolutional Neural Network (Faster R-CNN). Двухстадийный подход имеет ряд недостатков: долгое обучение и инференс, плохое качество детекции маленьких объектов, неустойчивость к различным размерам входных данных. Одностадийный алгоритм детекции подразумевает одновременное выполнение детекции и классификации, что обеспечивает end-to-end обучение с сохранением высоких показателей как точности, так и скорости.
Читать далее
#детекция #yolo #computer_vision #detection #you_only_look_once #bounding_box #data_science | @habr_ai
Хабр
You Only Look Once… But it Sees Everything! Обзор YOLO детекторов. Часть 1
Вступление Детекция объектов в реальном времени является важнейшей задачей и охватывает большое количество областей, таких как беспилотные транспортные средства, робототехника, видеонаблюдение,...
DETR: Бесконечная история
Всем привет, с вами команда Layer!
Мы рады сообщить, что совсем скоро выйдет наша новая исследовательская работа, посвященная поиску моментов в видео, релевантных пользовательскому запросу. Мы хотим сделать эту работу как можно более доступной для каждого, кто хочет глубже разобраться в теме. Поэтому мы решили написать этот небольшой туториал, посвященный семейству моделей DETR, так как они используются не только для детекции котиков на картинках, но и в таких необычных доменах, как детекция моментов в видео. Мы уверены, что среди читателей многие знакомы с основами DETR, однако подозреваем, что не все могли следить за её развитием. Всё‑таки по сравнению с YOLO, DETRу пиара явно не достает. В этой статье мы предлагаем краткий обзор эволюции модели, чтобы помочь вам лучше ориентироваться в новых исследованиях. Если же вы впервые слышите о DETR или хотите освежить свои знания, то бегом читать — тык, если после прочтения остались вопросы, то можно ознакомиться с этими видео — тык, тык.
Давайте детальнее разберёмся, что ждёт вас в этом туториале. Сначала мы рассмотрим недостатки оригинальной версии DETR, а затем перейдём к архитектурным улучшениям, которые либо устранили эти проблемы, либо заметно их сгладили. Начнём с Deformable DETR — модели, которая оптимизировала вычисления. Затем обратим внимание на Conditional DETR и DAB DETR — архитектуры, которые существенно переосмыслили роль queries в модели. Далее мы погрузимся в особенности DN‑DETR, который стабилизирует one‑to‑one matching. После этого детально разберём DINO DETR — модель, которая объединяет и улучшает идеи DN‑DETR и DAB‑DETR, а также переизобретает RPN для детекционных трансформеров. И в завершение нашего путешествия мы познакомимся с CO‑DETR, который объединил классические детекторы, такие как ATSS, Faster RCNN, и модели типа DETR, установив новые SOTA метрики на COCO.
Читать далее
#detr #machine_learning #deep_learning #detection #tutorial #машинное_обучение #глубокое_обучение #нейронные_сети #детекция | @habr_ai
Всем привет, с вами команда Layer!
Мы рады сообщить, что совсем скоро выйдет наша новая исследовательская работа, посвященная поиску моментов в видео, релевантных пользовательскому запросу. Мы хотим сделать эту работу как можно более доступной для каждого, кто хочет глубже разобраться в теме. Поэтому мы решили написать этот небольшой туториал, посвященный семейству моделей DETR, так как они используются не только для детекции котиков на картинках, но и в таких необычных доменах, как детекция моментов в видео. Мы уверены, что среди читателей многие знакомы с основами DETR, однако подозреваем, что не все могли следить за её развитием. Всё‑таки по сравнению с YOLO, DETRу пиара явно не достает. В этой статье мы предлагаем краткий обзор эволюции модели, чтобы помочь вам лучше ориентироваться в новых исследованиях. Если же вы впервые слышите о DETR или хотите освежить свои знания, то бегом читать — тык, если после прочтения остались вопросы, то можно ознакомиться с этими видео — тык, тык.
Давайте детальнее разберёмся, что ждёт вас в этом туториале. Сначала мы рассмотрим недостатки оригинальной версии DETR, а затем перейдём к архитектурным улучшениям, которые либо устранили эти проблемы, либо заметно их сгладили. Начнём с Deformable DETR — модели, которая оптимизировала вычисления. Затем обратим внимание на Conditional DETR и DAB DETR — архитектуры, которые существенно переосмыслили роль queries в модели. Далее мы погрузимся в особенности DN‑DETR, который стабилизирует one‑to‑one matching. После этого детально разберём DINO DETR — модель, которая объединяет и улучшает идеи DN‑DETR и DAB‑DETR, а также переизобретает RPN для детекционных трансформеров. И в завершение нашего путешествия мы познакомимся с CO‑DETR, который объединил классические детекторы, такие как ATSS, Faster RCNN, и модели типа DETR, установив новые SOTA метрики на COCO.
Читать далее
#detr #machine_learning #deep_learning #detection #tutorial #машинное_обучение #глубокое_обучение #нейронные_сети #детекция | @habr_ai
Хабр
DETR: Бесконечная история
Введение Всем привет, с вами команда Layer ! Мы рады сообщить, что совсем скоро выйдет наша новая исследовательская работа, посвященная поиску моментов в видео, релевантных...
Мэтчинг персонажей. Level Hard
Интро
Для всех, кто знаком со свертками, задача мэтчинга персонажейне кажется сверхсложной. На Kaggle есть даже соревнования с подобной задачей и размеченный датасет с персонажами мультсериала Симпсоны. Но здесь ключевое слово — «размеченный».
Что делать, если датасет не размеченный и на каждом изображении несколько персонажей, а размечать все это очень не хочется? Тут на помощь приходят алгоритмы сегментации и контрастивное обучение, но обо всем по порядку.
Какие данные
Мы работали с коллекцией гравюр Британского музея. Все гравюры находятся в открытом доступе, поэтому мы их спарсили (исключительно в исследовательских целях) для дальнейших манипуляций.
Итого, у нас в датасете оказалось около 25 тысяч гравюр. Да-да, это только гравюры, о количестве персонажей пока речи не идет. А учитывая любовь граверов 18-19 веков к изображению сцен с массовыми скоплениями людей, можем утверждать сразу, что персонажей будет намного больше. Читать далее
#image_segmentation #image_classification #self_supervised #computer_vision #detection | @habr_ai
Интро
Для всех, кто знаком со свертками, задача мэтчинга персонажейне кажется сверхсложной. На Kaggle есть даже соревнования с подобной задачей и размеченный датасет с персонажами мультсериала Симпсоны. Но здесь ключевое слово — «размеченный».
Что делать, если датасет не размеченный и на каждом изображении несколько персонажей, а размечать все это очень не хочется? Тут на помощь приходят алгоритмы сегментации и контрастивное обучение, но обо всем по порядку.
Какие данные
Мы работали с коллекцией гравюр Британского музея. Все гравюры находятся в открытом доступе, поэтому мы их спарсили (исключительно в исследовательских целях) для дальнейших манипуляций.
Итого, у нас в датасете оказалось около 25 тысяч гравюр. Да-да, это только гравюры, о количестве персонажей пока речи не идет. А учитывая любовь граверов 18-19 веков к изображению сцен с массовыми скоплениями людей, можем утверждать сразу, что персонажей будет намного больше. Читать далее
#image_segmentation #image_classification #self_supervised #computer_vision #detection | @habr_ai
Хабр
Мэтчинг персонажей. Level Hard
Интро Для всех, кто знаком со свертками, задача мэтчинга персонажей не кажется сверхсложной. На Kaggle есть даже соревнования с подобной задачей и размеченный датасет с персонажами...
HaGRIDv2-1M: 1 миллион изображений для распознавания статичных и динамических жестов
Датасет HaGRID, о котором мы писали в одном из постов, — это самый полный набор данных для построения системы распознавания жестов. Он стал очень популярным внутри комьюнити и нашел применение в таких задачах, как обучение и оценка нейронных сетей для распознавания жестов (о чем писали, например, тут и тут), а также в таких неочевидных приложениях, как генерация анатомически корректных рук с помощью диффузионных моделей (об этом можно почитать тут, тут и тут).
Данная статья посвящена расширенной версии датасета — HaGRIDv2-1M. Тут мы подробно расскажем о её отличиях от первой версии, поделимся результатами экспериментов и обсудим новые возможности. Кроме того, мы представляем новый real-time алгоритм для детекции динамических жестов, полностью обученный на HaGRIDv2-1M. Данные, код и предобученные модели можно найти в репозиториях HaGRID, dynamic gestures, а более подробно ознакомиться с работой можно в статьях HaGRIDv2-1M, HaGRID.
Читать далее
#data_mining #computer_vision #human_computer_interaction #gesture_recognition #device_control #datasets #data_science #deep_learning #neural_networks #detection | @habr_ai
Датасет HaGRID, о котором мы писали в одном из постов, — это самый полный набор данных для построения системы распознавания жестов. Он стал очень популярным внутри комьюнити и нашел применение в таких задачах, как обучение и оценка нейронных сетей для распознавания жестов (о чем писали, например, тут и тут), а также в таких неочевидных приложениях, как генерация анатомически корректных рук с помощью диффузионных моделей (об этом можно почитать тут, тут и тут).
Данная статья посвящена расширенной версии датасета — HaGRIDv2-1M. Тут мы подробно расскажем о её отличиях от первой версии, поделимся результатами экспериментов и обсудим новые возможности. Кроме того, мы представляем новый real-time алгоритм для детекции динамических жестов, полностью обученный на HaGRIDv2-1M. Данные, код и предобученные модели можно найти в репозиториях HaGRID, dynamic gestures, а более подробно ознакомиться с работой можно в статьях HaGRIDv2-1M, HaGRID.
Читать далее
#data_mining #computer_vision #human_computer_interaction #gesture_recognition #device_control #datasets #data_science #deep_learning #neural_networks #detection | @habr_ai
Хабр
HaGRIDv2-1M: 1 миллион изображений для распознавания статичных и динамических жестов
Жесты, представленные в датасете HaGRIDv2-1M. Новые жесты, добавленные к жестам из HaGRID, выделены красным В этой статье мы представляем HaGRIDv2-1M — обновлённую и значительно расширенную версию...
Мир будущего: управление устройствами с помощью жестов
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы можно было интегрировать в любое устройство с любым процессором, потратив минимальное количество денег.
Привет, Хабр! Это Александр Нагаев, техлид из SberDevices команды R&D компьютерного зрения. Расскажу, как создавать и использовать оптимизированные модели для управления устройствами с помощью жестов. Читать далее
#data_mining #computer_vision #detection #neural_networks #data_science #deep_learning #device_control #gesture_recognition #datasets #human_computer_interaction | @habr_ai
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы можно было интегрировать в любое устройство с любым процессором, потратив минимальное количество денег.
Привет, Хабр! Это Александр Нагаев, техлид из SberDevices команды R&D компьютерного зрения. Расскажу, как создавать и использовать оптимизированные модели для управления устройствами с помощью жестов. Читать далее
#data_mining #computer_vision #detection #neural_networks #data_science #deep_learning #device_control #gesture_recognition #datasets #human_computer_interaction | @habr_ai
Хабр
Мир будущего: управление устройствами с помощью жестов
Видели в кино, как устройствами управляют с помощью жестов? Сделать такую систему очень просто, а ещё очень дорого. Но всё-таки есть способ сделать её достаточно лёгкой и простой — настолько, чтобы...