Хабр / ML & AI
483 subscribers
5.48K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
RAG‑агент для автоматизации инцидент‑менеджмента

Современные крупные организации сталкиваются с большим числом ИТ‑инцидентов — счет может идти на тысячи в месяц. Инциденты нередко повторяются со временем, однако найти похожий случай в базе знаний или в системе регистрации инцидентов непросто: стандартный поиск по ключевым словам часто неэффективен, а «держать в голове» детали всех инцидентов невозможно. Читать далее

#nlp #ai #bigdata #automation #инцидент_менеджмент #machine_learning #rag | @habr_ai
Запускаем личный АИ-инфоконвейер: как я строю систему смыслового мониторинга с YAML и GPT

Мне приходится тратить много времени на мониторинг арбитража, госзакупок и других документов: PDF на сотни страниц, новости с «водой», RSS при этом отсутствует.

Поэтому я решил разработать open-source инструмент, который сам проверяет сайты, скачивает документы и с помощью локального ИИ (GPT4All / DeepSeek) делает краткую смысловую выжимку по YAML-шаблону.

Он должен работать как конвейер: источник → шаблон → интерпретация → результат. Локально, без облаков. И объединять всё в единую ленту новостей.

Сейчас я дорабатываю MVP — и я хочу понять, какие шаблоны наблюдения наиболее востребованы: законопроекты, торги, релизы, или что-то ещё? Читать далее

#ai #парсинг #llm #gpt4all #yaml #open_source #self_hosted #cli #automation #documents | @habr_ai
Как внедрить автоматическое ревью кода с помощью ИИ: опыт Microsoft, Google и ByteDance + практическое руководство

TL;DR

Автоматическое ревью кода с помощью ИИ уже работает в продакшене крупнейших компаний. Microsoft обрабатывает 600 000 пулл-реквестов в месяц, экономя сотни тысяч часов. ByteDance достигла 75% точности с 12 000 активных пользователей еженедельно. Google автоматизировал 7,5% всех комментариев ревьюеров. В статье — детальный разбор архитектур, метрики эффективности и пошаговое руководство по внедрению с расчётом окупаемости. Читать далее

#artificial_intelligence #code_review #devops #machine_learning #github #cicd #software_engineering #software_development #automation | @habr_ai