NLP: когда машины начинают понимать нас (Часть 2)
В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка программирования и инструментов играет ключевую роль в успешной реализации проектов. Одним из наиболее популярных языков для решения задач в этой области является Python. Его простота, читаемость и поддержка мощных библиотек делают его идеальным выбором для разработчиков.
Читать далее
#обработка_естественного_языка #nlp #natural_language_processing #machine_learning #машинное_обучение #искусственный_интеллект #python #пайтон #nltk #spacy | @habr_ai
В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка программирования и инструментов играет ключевую роль в успешной реализации проектов. Одним из наиболее популярных языков для решения задач в этой области является Python. Его простота, читаемость и поддержка мощных библиотек делают его идеальным выбором для разработчиков.
Читать далее
#обработка_естественного_языка #nlp #natural_language_processing #machine_learning #машинное_обучение #искусственный_интеллект #python #пайтон #nltk #spacy | @habr_ai
Хабр
NLP: когда машины начинают понимать нас (Часть 2)
1. Введение В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка...
NLP: когда машины начинают понимать нас (Часть 3)
В этой статье мы продолжим изучение NLP и перейдем к более продвинутым темам, которые являются главными для построения современных приложений и моделей в области обработки естественного языка. А также создадим и обучим модели самостоятельно, используя TensorFlow/Keras и PyTorch.
Читать далее
#обработка_естественного_языка #nlp #natural_language_processing #python #машинное_обучение #machine_learning #keras #tensorflow #pytorch #искусственный_интеллект | @habr_ai
В этой статье мы продолжим изучение NLP и перейдем к более продвинутым темам, которые являются главными для построения современных приложений и моделей в области обработки естественного языка. А также создадим и обучим модели самостоятельно, используя TensorFlow/Keras и PyTorch.
Читать далее
#обработка_естественного_языка #nlp #natural_language_processing #python #машинное_обучение #machine_learning #keras #tensorflow #pytorch #искусственный_интеллект | @habr_ai
Хабр
NLP: когда машины начинают понимать нас (Часть 3)
1. Введение В предыдущих статьях мы рассмотрели теоретические основы NLP, включая базовые понятия, такие как токенизация, стемминг, лемматизация и другие. Мы также поработали с библиотеками NLTK...
Задача Emotional FusionBrain 4.0: итоги и победители
Всем привет! На связи снова лаборатория FusionBrain!
В сентябре мы анонсировали задачу Emotional FusionBrain 4.0, которая стало частью соревнования AI Journey Contest. Участникам предстояло разработать универсальную мультимодальную модель, которая учится понимать социальные взаимодействия людей по видео — другими словами, создать эмоциональный искусственный интеллект.
Теперь пришла пора подводить итоги!
Но начнём мы, конечно же, с описания задачи, чтобы уважаемые читатели оказались в едином контексте :)
Читать далее
#соревнования #artificial_intelligence #natural_language_processing #deeplearning #хакатоны #хакатон #сбер #большие_языковые_модели #мультимодальные_модели #мультимодальные_данные | @habr_ai
Всем привет! На связи снова лаборатория FusionBrain!
В сентябре мы анонсировали задачу Emotional FusionBrain 4.0, которая стало частью соревнования AI Journey Contest. Участникам предстояло разработать универсальную мультимодальную модель, которая учится понимать социальные взаимодействия людей по видео — другими словами, создать эмоциональный искусственный интеллект.
Теперь пришла пора подводить итоги!
Но начнём мы, конечно же, с описания задачи, чтобы уважаемые читатели оказались в едином контексте :)
Читать далее
#соревнования #artificial_intelligence #natural_language_processing #deeplearning #хакатоны #хакатон #сбер #большие_языковые_модели #мультимодальные_модели #мультимодальные_данные | @habr_ai
Хабр
Задача Emotional FusionBrain 4.0: итоги и победители
Всем привет! На связи снова лаборатория FusionBrain! В сентябре мы анонсировали задачу Emotional FusionBrain 4.0, которая стала частью соревнования AI Journey Contest. Участникам предстояло...
Используем LLM для подбора подрядчиков: как это работает
Привет, Хабр! Меня зовут Иван, работаю data scientist в Doubletapp. Хочу поделиться кейсом, как мы решали задачу по автоматизации процессов отсмотра, сортировки и сверки входящих документов заказчика.
Читайте в статье:
• С какими документами мы работали и что в них должно быть
• Классификация и сверка документов
• Как система показала себя в работе
Читать далее
#автоматизация #искусственный_интеллект #автоматизация_бизнеса_заказчиков #автоматизация_бизнес_процессов #большие_языковые_модели #машинное_обучение #машинное_обучение_и_нейросети #natural_language_processing | @habr_ai
Привет, Хабр! Меня зовут Иван, работаю data scientist в Doubletapp. Хочу поделиться кейсом, как мы решали задачу по автоматизации процессов отсмотра, сортировки и сверки входящих документов заказчика.
Читайте в статье:
• С какими документами мы работали и что в них должно быть
• Классификация и сверка документов
• Как система показала себя в работе
Читать далее
#автоматизация #искусственный_интеллект #автоматизация_бизнеса_заказчиков #автоматизация_бизнес_процессов #большие_языковые_модели #машинное_обучение #машинное_обучение_и_нейросети #natural_language_processing | @habr_ai
Сэм Альтман знает, как достичь AGI. Я тоже, и сейчас расскажу как
«Теперь мы уверены, что знаем, как построить AGI в том виде, в каком мы традиционно его понимали… Сейчас это звучит как научная фантастика, и даже говорить об этом как-то безумно. Все в порядке — мы уже были там раньше и не против оказаться там снова.» Такое сообщение 6 января опубликовал Сэм Альтман.
Человечество нашло дорогу, по которой можно дальше и дальше улучшать качество моделей, и мы не видим здесь никакого предела. Про эту дорогу знает Альтман, и скоро узнаете вы.
Поехали в AGI
#openai #нейросети #gpt #генеративные_модели #машинное_обучение #искусственный_интеллект #natural_language_processing #agi #artificial_intelligence #ai | @habr_ai
«Теперь мы уверены, что знаем, как построить AGI в том виде, в каком мы традиционно его понимали… Сейчас это звучит как научная фантастика, и даже говорить об этом как-то безумно. Все в порядке — мы уже были там раньше и не против оказаться там снова.» Такое сообщение 6 января опубликовал Сэм Альтман.
Человечество нашло дорогу, по которой можно дальше и дальше улучшать качество моделей, и мы не видим здесь никакого предела. Про эту дорогу знает Альтман, и скоро узнаете вы.
Поехали в AGI
#openai #нейросети #gpt #генеративные_модели #машинное_обучение #искусственный_интеллект #natural_language_processing #agi #artificial_intelligence #ai | @habr_ai
Хабр
Сэм Альтман знает, как достичь AGI. Я тоже, и сейчас расскажу как
«Теперь мы уверены, что знаем, как построить AGI в том виде, в каком мы традиционно его понимали… Сейчас это звучит как научная фантастика, и даже говорить об этом как-то безумно. Все в порядке — мы...
Разметка данных с использованием LLM
Всем привет! Меня зовут Артем Ерохин. Я работаю в X5 Tech в направлении продуктивизации ИИ. В прошлом году у меня был доклад про разметку данных с LLM. И я решил преобразовать этот доклад в статью, попутно обновив некоторые цифры и тезисы (такова уж скорость прогресса в этой области).
Читать далее
#llm #искусственный_интеллект #машинное_обучение #ии #разметка_данных #machine_learning #синтетические_данные #natural_language_processing | @habr_ai
Всем привет! Меня зовут Артем Ерохин. Я работаю в X5 Tech в направлении продуктивизации ИИ. В прошлом году у меня был доклад про разметку данных с LLM. И я решил преобразовать этот доклад в статью, попутно обновив некоторые цифры и тезисы (такова уж скорость прогресса в этой области).
Читать далее
#llm #искусственный_интеллект #машинное_обучение #ии #разметка_данных #machine_learning #синтетические_данные #natural_language_processing | @habr_ai
Хабр
Разметка данных с использованием LLM
Всем привет! Меня зовут Артем Ерохин. Я работаю в X5 Tech в направлении продуктивизации ИИ. В прошлом году у меня был доклад про разметку данных с LLM . И я решил преобразовать этот доклад в статью,...
[Перевод] Применение методов обработки естественного языка и больших языковых моделей в области открытия новых материалов
Стремительное развитие технологий искусственного интеллекта (ИИ) произвело радикальный переворот в науке о материалах, открыв новые пути решения ключевых проблем. Используя тщательно описанные наборы данных, извлеченные из научной литературы, инструменты на базе ИИ, включая методы обработки естественного языка (NLP), позволяют ускорить исследования в области материалов.
Совершенствование NLP-подходов и появление больших языковых моделей (LLMs) способствуют более эффективному извлечению и использованию информации. В настоящем обзоре рассматриваются возможности применения инструментов NLP в науке о материалах, с особым вниманием к автоматическому извлечению данных, поиску новых материалов и автономным исследованиям. Также обсуждаются вызовы и перспективы, связанные с использованием LLMs, и очерчиваются будущие достижения, способные вывести отрасль на новый уровень.
Дисклеймер: это вольный перевод научной статьи из журнала Nature Читать далее
#материаловедение #nlp #natural_language_processing #nlu #natural_language_understanding #llm #gpt | @habr_ai
Стремительное развитие технологий искусственного интеллекта (ИИ) произвело радикальный переворот в науке о материалах, открыв новые пути решения ключевых проблем. Используя тщательно описанные наборы данных, извлеченные из научной литературы, инструменты на базе ИИ, включая методы обработки естественного языка (NLP), позволяют ускорить исследования в области материалов.
Совершенствование NLP-подходов и появление больших языковых моделей (LLMs) способствуют более эффективному извлечению и использованию информации. В настоящем обзоре рассматриваются возможности применения инструментов NLP в науке о материалах, с особым вниманием к автоматическому извлечению данных, поиску новых материалов и автономным исследованиям. Также обсуждаются вызовы и перспективы, связанные с использованием LLMs, и очерчиваются будущие достижения, способные вывести отрасль на новый уровень.
Дисклеймер: это вольный перевод научной статьи из журнала Nature Читать далее
#материаловедение #nlp #natural_language_processing #nlu #natural_language_understanding #llm #gpt | @habr_ai
Хабр
Применение методов обработки естественного языка и больших языковых моделей в области открытия новых материалов
Абстракт Стремительное развитие технологий искусственного интеллекта (ИИ) произвело радикальный переворот в науке о материалах, открыв новые пути решения ключевых проблем. Используя тщательно...
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.
Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.
Читать далее
#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.
Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.
Читать далее
#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
Хабр
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа...
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.
Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.
Читать далее
#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.
Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.
Читать далее
#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
Хабр
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype
Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа...
RAG: борьба с низким качеством ответов в условия экономии памяти на GPU
Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы начинаем серию статей, в которой я расскажу о том, как мы с командой разрабатывали ИИ-помощника, а также приведу практические кейсы по улучшению точности ответов с минимальными затратами памяти графических процессоров.
Как вы уже могли догадаться, наш ИИ-помощник разработан на основе RAG (Retrieval-Augmented Generation) системы. Хотя принцип работы RAG многим уже знаком и не вызывает того самого «вау», я всё же кратко напомню, как эта система работает, почему она так популярна и почему её ответам можно доверять.
В этой статье я расскажу, как мы разрабатывали RAG-систему для юридического отдела нашей компании, с какими вызовами столкнулись и как их преодолевали. Вы узнаете, почему стандартные подходы не всегда работают, и как, погрузившись в специфику данных, мы смогли значительно улучшить качество ответов, сохранив при этом экономию ресурсов GPU.
Читать далее
#rag #natural_language_processing #искусственный_интеллект #машинное_обучение #ии_помощник #чанки #baseline | @habr_ai
Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы начинаем серию статей, в которой я расскажу о том, как мы с командой разрабатывали ИИ-помощника, а также приведу практические кейсы по улучшению точности ответов с минимальными затратами памяти графических процессоров.
Как вы уже могли догадаться, наш ИИ-помощник разработан на основе RAG (Retrieval-Augmented Generation) системы. Хотя принцип работы RAG многим уже знаком и не вызывает того самого «вау», я всё же кратко напомню, как эта система работает, почему она так популярна и почему её ответам можно доверять.
В этой статье я расскажу, как мы разрабатывали RAG-систему для юридического отдела нашей компании, с какими вызовами столкнулись и как их преодолевали. Вы узнаете, почему стандартные подходы не всегда работают, и как, погрузившись в специфику данных, мы смогли значительно улучшить качество ответов, сохранив при этом экономию ресурсов GPU.
Читать далее
#rag #natural_language_processing #искусственный_интеллект #машинное_обучение #ии_помощник #чанки #baseline | @habr_ai
Хабр
RAG: борьба с низким качеством ответов в условиях экономии памяти на GPU
Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы начинаем серию статей, в которой я расскажу о том, как мы с командой...