Хабр / ML & AI
480 subscribers
5.47K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
NLP: когда машины начинают понимать нас (Часть 2)

В прошлой статье мы с вами изучили теоретические основы обработки естественного языка (NLP) и теперь готовы перейти к практике. В мире NLP выбор подходящего языка программирования и инструментов играет ключевую роль в успешной реализации проектов. Одним из наиболее популярных языков для решения задач в этой области является Python. Его простота, читаемость и поддержка мощных библиотек делают его идеальным выбором для разработчиков.

Читать далее

#обработка_естественного_языка #nlp #natural_language_processing #machine_learning #машинное_обучение #искусственный_интеллект #python #пайтон #nltk #spacy | @habr_ai
Задача Emotional FusionBrain 4.0: итоги и победители

Всем привет! На связи снова лаборатория FusionBrain!

В сентябре мы анонсировали задачу Emotional FusionBrain 4.0, которая стало частью соревнования AI Journey Contest. Участникам предстояло разработать универсальную мультимодальную модель, которая учится понимать социальные взаимодействия людей по видео — другими словами, создать эмоциональный искусственный интеллект.

Теперь пришла пора подводить итоги!

Но начнём мы, конечно же, с описания задачи, чтобы уважаемые читатели оказались в едином контексте :)

Читать далее

#соревнования #artificial_intelligence #natural_language_processing #deeplearning #хакатоны #хакатон #сбер #большие_языковые_модели #мультимодальные_модели #мультимодальные_данные | @habr_ai
Сэм Альтман знает, как достичь AGI. Я тоже, и сейчас расскажу как

«Теперь мы уверены, что знаем, как построить AGI в том виде, в каком мы традиционно его понимали… Сейчас это звучит как научная фантастика, и даже говорить об этом как-то безумно. Все в порядке — мы уже были там раньше и не против оказаться там снова.» Такое сообщение 6 января опубликовал Сэм Альтман.

Человечество нашло дорогу, по которой можно дальше и дальше улучшать качество моделей, и мы не видим здесь никакого предела. Про эту дорогу знает Альтман, и скоро узнаете вы.

Поехали в AGI

#openai #нейросети #gpt #генеративные_модели #машинное_обучение #искусственный_интеллект #natural_language_processing #agi #artificial_intelligence #ai | @habr_ai
[Перевод] Применение методов обработки естественного языка и больших языковых моделей в области открытия новых материалов

Стремительное развитие технологий искусственного интеллекта (ИИ) произвело радикальный переворот в науке о материалах, открыв новые пути решения ключевых проблем. Используя тщательно описанные наборы данных, извлеченные из научной литературы, инструменты на базе ИИ, включая методы обработки естественного языка (NLP), позволяют ускорить исследования в области материалов.

Совершенствование NLP-подходов и появление больших языковых моделей (LLMs) способствуют более эффективному извлечению и использованию информации. В настоящем обзоре рассматриваются возможности применения инструментов NLP в науке о материалах, с особым вниманием к автоматическому извлечению данных, поиску новых материалов и автономным исследованиям. Также обсуждаются вызовы и перспективы, связанные с использованием LLMs, и очерчиваются будущие достижения, способные вывести отрасль на новый уровень.

Дисклеймер: это вольный перевод научной статьи из журнала Nature Читать далее

#материаловедение #nlp #natural_language_processing #nlu #natural_language_understanding #llm #gpt | @habr_ai
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype

Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.

Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.

Читать далее

#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
Как мы учим LLM оценивать друг друга и как это помогло нам улучшить Cotype

Всем привет! Сегодня мы выпустили новую версию нашей большой языковой модели Cotype – Cotype Pro 2, с улучшенными возможностями генерации и редактирования текстов, а также суммаризации и анализа информации. Однако в этой статье мы дадим лишь краткое представление нашего нового творения и его преимуществ, а больше расскажем о том, как мы улучшили пайплайн обучения нашей LLM с помощью новой методологии оценки.

Эта методология была разработана в рамках исследования, посвященного сравнению моделей методом Side-by-Side для автоматической оценки LLM. Мы выкладываем в открытый доступ код для её воспроизведения и лидерборд на HuggingFace для сравнения как коммерческих, так и открытых моделей.

Читать далее

#искусственный_интеллект #natural_language_processing #nlp #нейросети #ии #языковые_модели #обучение_нейронных_сетей #side_by_side | @habr_ai
RAG: борьба с низким качеством ответов в условия экономии памяти на GPU

Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы начинаем серию статей, в которой я расскажу о том, как мы с командой разрабатывали ИИ-помощника, а также приведу практические кейсы по улучшению точности ответов с минимальными затратами памяти графических процессоров. 

Как вы уже могли догадаться, наш ИИ-помощник разработан на основе RAG (Retrieval-Augmented Generation) системы. Хотя принцип работы RAG многим уже знаком и не вызывает того самого «вау», я всё же кратко напомню, как эта система работает, почему она так популярна и почему её ответам можно доверять.

В этой статье я расскажу, как мы разрабатывали RAG-систему для юридического отдела нашей компании, с какими вызовами столкнулись и как их преодолевали. Вы узнаете, почему стандартные подходы не всегда работают, и как, погрузившись в специфику данных, мы смогли значительно улучшить качество ответов, сохранив при этом экономию ресурсов GPU.

Читать далее

#rag #natural_language_processing #искусственный_интеллект #машинное_обучение #ии_помощник #чанки #baseline | @habr_ai