GAN и диффузионные модели: как научить нейросеть рисовать
Привет! Сегодня хочу поговорить о двух очень горячих темах в области искусственного интеллекта — генеративно‑состязательные сети (GAN) и диффузионные модели (типа Stable Diffusion). Я сама как‑то подсела на все эти AI‑картинки и поняла, что нужно срочно поделиться тем что накопала. Поехали!:‑) Читать далее
#gan #диффузионные_модели #stable_diffusion #генеративные_сети #искусственный_интеллект #машинное_обучение #pytorch #датасеты #синтетические_данные #ai_арт | @habr_ai
Привет! Сегодня хочу поговорить о двух очень горячих темах в области искусственного интеллекта — генеративно‑состязательные сети (GAN) и диффузионные модели (типа Stable Diffusion). Я сама как‑то подсела на все эти AI‑картинки и поняла, что нужно срочно поделиться тем что накопала. Поехали!:‑) Читать далее
#gan #диффузионные_модели #stable_diffusion #генеративные_сети #искусственный_интеллект #машинное_обучение #pytorch #датасеты #синтетические_данные #ai_арт | @habr_ai
Хабр
GAN и диффузионные модели: как научить нейросеть рисовать
Привет! Сегодня хочу поговорить о двух очень горячих темах в области искусственного интеллекта — генеративно‑состязательные сети (GAN) и диффузионные модели (типа Stable Diffusion). Я...
Анализ обработки признаков в YOLO NAS S при помощи CAM
Методы объяснения моделей — практичный инструмент для понимания модели, оценки её точности и стабильности. Однако, часто можно столкнуться с ситуацией, когда фреймворк, в котором метод реализован, просто не "дружит" с реализацией модели. В этом туториале хочу подробно показать CAM (class activation map) для объяснения моделей зрения.
Читать далее
#машинное_обучение #explainable_ai #нейронные_сети #pytorch | @habr_ai
Методы объяснения моделей — практичный инструмент для понимания модели, оценки её точности и стабильности. Однако, часто можно столкнуться с ситуацией, когда фреймворк, в котором метод реализован, просто не "дружит" с реализацией модели. В этом туториале хочу подробно показать CAM (class activation map) для объяснения моделей зрения.
Читать далее
#машинное_обучение #explainable_ai #нейронные_сети #pytorch | @habr_ai
Хабр
Анализ обработки признаков в YOLO NAS S при помощи CAM
Методы объяснения моделей — практичный инструмент для понимания модели, оценки её точности и стабильности. Однако, часто можно столкнуться с ситуацией, когда фреймворк, в котором метод реализован,...
Оптимизация Trellis: запускаем генерацию 3D моделей на GPU с 8ГБ памяти
Я оптимизировал Trellis для работы на обычных ПК. Это мощный AI-инструмент для генерации 3D моделей из изображений, и хочу поделиться тем, как удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив качество генерации.
Читать далее
#3d_генерация #ии #ai #trellis #оптимизация #python #pytorch #машинное_обучение #графика | @habr_ai
Я оптимизировал Trellis для работы на обычных ПК. Это мощный AI-инструмент для генерации 3D моделей из изображений, и хочу поделиться тем, как удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив качество генерации.
Читать далее
#3d_генерация #ии #ai #trellis #оптимизация #python #pytorch #машинное_обучение #графика | @habr_ai
Хабр
Оптимизация Trellis: запускаем генерацию 3D моделей на GPU с 8ГБ памяти
Привет, Хабр! Я оптимизировал Trellis — мощный AI-инструмент для генерации 3D моделей из изображений, и хочу поделиться тем, как удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив...
Рынок труда ML-специалистов в 2025 году: востребованные навыки и карьерные треки
В одном из недавних интервью Марк Цукерберг заявил, что к 2025 году искусственный интеллект (ИИ) сможет выполнять большинство задач Middle-разработчиков в Meta (запрещенная в РФ организация). По словам Цукерберга, ИИ уже помогает писать код и постепенно забирает на себя простые инженерные задачи, но хорошие Middle-инженеры все еще будут нужны. Правда при условии, что они будут осваивать новые востребованные технологии.
С учетом влияния компании на технологическую повестку во всем мире заявление звучит серьезно: крупные игроки индустрии уже сейчас диктуют направление, в котором будет развиваться рынок труда в связи с масштабированием ИИ — это автоматизация большей части функций и появление новых. В таких условиях многим специалистам придется адаптироваться и прокачивать навыки, чтобы оставаться востребованными на рынке.
Читать далее
#машинное_обучение #ml_инженер #ai_talent_hub #mlops #разработка_веб_сервисов #рынок_труда_it #pytorch #scikit_learn #apache_airflow #postgresql | @habr_ai
В одном из недавних интервью Марк Цукерберг заявил, что к 2025 году искусственный интеллект (ИИ) сможет выполнять большинство задач Middle-разработчиков в Meta (запрещенная в РФ организация). По словам Цукерберга, ИИ уже помогает писать код и постепенно забирает на себя простые инженерные задачи, но хорошие Middle-инженеры все еще будут нужны. Правда при условии, что они будут осваивать новые востребованные технологии.
С учетом влияния компании на технологическую повестку во всем мире заявление звучит серьезно: крупные игроки индустрии уже сейчас диктуют направление, в котором будет развиваться рынок труда в связи с масштабированием ИИ — это автоматизация большей части функций и появление новых. В таких условиях многим специалистам придется адаптироваться и прокачивать навыки, чтобы оставаться востребованными на рынке.
Читать далее
#машинное_обучение #ml_инженер #ai_talent_hub #mlops #разработка_веб_сервисов #рынок_труда_it #pytorch #scikit_learn #apache_airflow #postgresql | @habr_ai
Обучить модель RoBERTa расстановке запятых на балконе для продакшена
RoBERTa — улучшенная версия модели BERT, разработанная Facebook AI. Она показывает отличные результаты в задачах обработки естественного языка, таких как классификация текстов и генерация ответов.
Построим конкурентоспособный сайт расстановки пунктуации, обучив свою нейронную сеть. Для прогнозирования популярности в поисковой выдаче начнем с анализа запросов Вордстат: расставить запятые – 290 000 запросов/месяц; расставить точки – 15 000 запросов/месяц.
По статистике, 95% запросов посвящены запятым, уделим им особое внимание. Добавим мультиязычность, чтобы получать больше трафика.
Читать далее
#pytorch #python #машинное_обучение #нейросеть #искусственный_интеллект #roberta #обработка_текста #запятая #знаки_препинания #пунктуация | @habr_ai
RoBERTa — улучшенная версия модели BERT, разработанная Facebook AI. Она показывает отличные результаты в задачах обработки естественного языка, таких как классификация текстов и генерация ответов.
Построим конкурентоспособный сайт расстановки пунктуации, обучив свою нейронную сеть. Для прогнозирования популярности в поисковой выдаче начнем с анализа запросов Вордстат: расставить запятые – 290 000 запросов/месяц; расставить точки – 15 000 запросов/месяц.
По статистике, 95% запросов посвящены запятым, уделим им особое внимание. Добавим мультиязычность, чтобы получать больше трафика.
Читать далее
#pytorch #python #машинное_обучение #нейросеть #искусственный_интеллект #roberta #обработка_текста #запятая #знаки_препинания #пунктуация | @habr_ai
Хабр
Обучить модель RoBERTa расстановке запятых на балконе для продакшена
RoBERTa — улучшенная версия модели BERT, разработанная Facebook AI. Она показывает отличные результаты в задачах обработки естественного языка, таких как классификация текстов и генерация ответов....
Airsim умер, да здравствует GRID
Привет!
В данной вводной статье покажу вам, как моделировать поведение беспилотного автомобиля в городских условиях, не выходя из своей квартиры. Читать далее
#дроны #ии #ии_модель #python #pytorch #беспилотники #робототехника | @habr_ai
Привет!
В данной вводной статье покажу вам, как моделировать поведение беспилотного автомобиля в городских условиях, не выходя из своей квартиры. Читать далее
#дроны #ии #ии_модель #python #pytorch #беспилотники #робототехника | @habr_ai
Хабр
Airsim умер, да здравствует GRID
Проблема, с которой часто встречаются разработчики, в том числе и компании, заключается в обучении дронов и роботов. До недавнего времени эту проблему позволяла решить Aerial Informatics and Robotics...
Десять уроков развития аппаратных ускорителей для ИИ: как эволюция TPU привела к созданию TPUv4i
В последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного наращивания «универсального» железа, компании начали разрабатывать и внедрять в своих дата-центрах Domain-Specific Architecture (DSA) — аппаратные ускорители, заточенные под конкретные задачи.
Google TPU (Tensor Processing Unit) — одно из первых крупных решений такого рода. Начиная с 2015 года (поколение TPUv1), Google успела вывести на рынок несколько поколений TPU для внутренних нужд: TPUv1 и TPUv2/v3, а в 2020 году — новое решение TPUv4i. Если первые версии TPU были ориентированы исключительно на ускорение инференса (выполнение уже обученных моделей), то TPUv2 и TPUv3 смогли взять на себя ещё и тренировку крупных нейросетей. Но в дальнейшем выяснилось, что для оптимальной работы дата-центров в масштабах Google рациональнее разделить решения для тренировки и инференса. TPUv4i — это результат учёта многих уроков и ограничений, проявившихся в предыдущих чипах.
В этом материале разберём, какие «десять уроков» сформировали подход Google к созданию TPUv4i, что это за архитектура и какие проблемы дата-центров она решает.
Читать далее
#ml #pytorch #proceesors #deep_learning #inference | @habr_ai
В последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного наращивания «универсального» железа, компании начали разрабатывать и внедрять в своих дата-центрах Domain-Specific Architecture (DSA) — аппаратные ускорители, заточенные под конкретные задачи.
Google TPU (Tensor Processing Unit) — одно из первых крупных решений такого рода. Начиная с 2015 года (поколение TPUv1), Google успела вывести на рынок несколько поколений TPU для внутренних нужд: TPUv1 и TPUv2/v3, а в 2020 году — новое решение TPUv4i. Если первые версии TPU были ориентированы исключительно на ускорение инференса (выполнение уже обученных моделей), то TPUv2 и TPUv3 смогли взять на себя ещё и тренировку крупных нейросетей. Но в дальнейшем выяснилось, что для оптимальной работы дата-центров в масштабах Google рациональнее разделить решения для тренировки и инференса. TPUv4i — это результат учёта многих уроков и ограничений, проявившихся в предыдущих чипах.
В этом материале разберём, какие «десять уроков» сформировали подход Google к созданию TPUv4i, что это за архитектура и какие проблемы дата-центров она решает.
Читать далее
#ml #pytorch #proceesors #deep_learning #inference | @habr_ai
Хабр
Десять уроков развития аппаратных ускорителей для ИИ: как эволюция TPU привела к созданию TPUv4i
В последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного...
Пишем свой Transformer
Захотелось более детально разобраться и попробовать самостоятельно написать Transformer на PyTorch. Результатом захотелось поделиться здесь. Надеюсь, так же как и мне, это поможет доразобраться в данной архитектуре и ответить на какие-то вопросы. Читать далее
#transformer #attention #pytorch | @habr_ai
Захотелось более детально разобраться и попробовать самостоятельно написать Transformer на PyTorch. Результатом захотелось поделиться здесь. Надеюсь, так же как и мне, это поможет доразобраться в данной архитектуре и ответить на какие-то вопросы. Читать далее
#transformer #attention #pytorch | @habr_ai
Хабр
Пишем свой Transformer
Захотелось более детально разобраться и попробовать самостоятельно написать Transformer на PyTorch, а результатом поделиться здесь. Надеюсь, так же как и мне, это поможет ответить на какие-то вопросы...
Кастомные loss-функции в TensorFlow/Keras и PyTorch
Привет, Хабр!
Стандартные loss‑функции, такие как MSE или CrossEntropy, хороши, но часто им не хватает гибкости для сложных задач. Допустим, есть тот же проект с огромным дисбалансом классов, или хочется внедрить специфическую регуляризацию прямо в функцию потерь. Стандартный функционал тут бессилен — тут на помощь приходят кастомные loss'ы.
Читать далее
#ml #loss_функции #tensorflow #keras #pytorch | @habr_ai
Привет, Хабр!
Стандартные loss‑функции, такие как MSE или CrossEntropy, хороши, но часто им не хватает гибкости для сложных задач. Допустим, есть тот же проект с огромным дисбалансом классов, или хочется внедрить специфическую регуляризацию прямо в функцию потерь. Стандартный функционал тут бессилен — тут на помощь приходят кастомные loss'ы.
Читать далее
#ml #loss_функции #tensorflow #keras #pytorch | @habr_ai
Хабр
Кастомные loss-функции в TensorFlow/Keras и PyTorch
Привет, Хабр! Стандартные loss‑функции, такие как MSE или CrossEntropy, хороши, но часто им не хватает гибкости для сложных задач. Допустим, есть тот же проект...
ML на «плюсах»: 5 материалов о необычном подходе к обучению моделей
Когда мы говорим о машинном обучении, то автоматически подразумевает Python. Это справедливо: на Python есть множество удобных ML-инструментов, например, популярная библиотека PyTorch. Тем не менее, некоторые задачи можно решать с помощью С++. И не только ради эксперимента, а для увеличения производительности сервисов и упрощения работы с кодом.
Кирилл Колодяжный, разработчик СХД в YADRO, несколько лет изучает машинное обучение на С++. Он уже написал программы для поиска лица на фото и для распознавания объектов в реальном времени. Под катом — пять материалов Кирилла, после которых инженерам захочется «пересесть» с Python на C++. Хотя бы на время. Читать далее
#c_ #машинное_обучение #свертки #pytorch #yolo #компьютерное_зрение #face_detection | @habr_ai
Когда мы говорим о машинном обучении, то автоматически подразумевает Python. Это справедливо: на Python есть множество удобных ML-инструментов, например, популярная библиотека PyTorch. Тем не менее, некоторые задачи можно решать с помощью С++. И не только ради эксперимента, а для увеличения производительности сервисов и упрощения работы с кодом.
Кирилл Колодяжный, разработчик СХД в YADRO, несколько лет изучает машинное обучение на С++. Он уже написал программы для поиска лица на фото и для распознавания объектов в реальном времени. Под катом — пять материалов Кирилла, после которых инженерам захочется «пересесть» с Python на C++. Хотя бы на время. Читать далее
#c_ #машинное_обучение #свертки #pytorch #yolo #компьютерное_зрение #face_detection | @habr_ai
Хабр
ML на «плюсах»: 5 материалов о необычном подходе к обучению моделей
Когда мы говорим о машинном обучении, то автоматически подразумеваем Python. Это справедливо: на Python есть множество удобных ML-инструментов, например, популярная библиотека PyTorch. Тем не...