Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
🌟 Генеративные агенты: моделирование поведения 1000 человек.

Stanford University, Northwestern University и University of Washington, совместно с Google Deepmind, при участии социологов, разработали архитектуру, которая позволяет симулировать поведение более 1000 реальных людей с помощью LLM, обученных на транскрипции двухчасовых интервью с добровольцами-участниками.

Архитектура использует метод "экспертных размышлений", где LLM генерирует выводы о каждом участнике, принимая на себя роли различных специалистов социальных наук (психолога, экономиста, политолога, демографа).

Процесс создания агентов начинался со стратифицированного отбора 1052 участников, репрезентирующих население США по возрасту, полу, расе, региону, образованию и политическим взглядам. Масштабирование сбора данных проводилось агентом-интервьюером на основе GPT-4o, который динамически генерировал уточняющие вопросы, адаптируясь к ответам участников.

Оценка точности агентов проводилась с помощью сравнения их ответов с ответами реальных участников на вопросы из Общего социального опроса (GSS), опросника "Большая пятерка" (BFI-44), 5 экономических игр и 5 социальных экспериментов. Для учета непостоянства человеческого поведения точность агентов нормализовали с помощью сравнения с тем, насколько последовательно сами участники воспроизводили свои ответы через две недели.

Результаты оценки показали высокую точность прогнозирования агентов, обученных на интервью. Они смогли предсказать ответы на вопросы GSS с нормализованной точностью 0.85, а черты личности по BFI-44 - с нормализованной корреляцией 0.80. Использование интервью значительно повысило точность по сравнению с агентами, использующими только демографические данные или краткие описания личности.

В экспериментах агенты успешно воспроизвели 4 из 5 личностных особенностей, наблюдавшихся у реальных участников, а оценки размеров этих особенностей показали высокую корреляцию (r = 0.98).

Доступ к банку агентов двухуровневый:

🟢открытый доступ к агрегированным ответам на фиксированные задачи и репозиторий с кодом для воспроизведения

🟠ограниченный доступ к индивидуальным ответам на открытые задачи по запросу.


📌 Лицензирование: MIT License.


🟡Arxiv
🟡Dataset
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Social
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 Google запускает A2A — новый протокол общения между ИИ-агентами

Google представил Agent2Agent (A2A) — открытый стандарт для обмена задачами между ИИ-агентами в разных сервисах и компаниях.
Это что-то вроде MCP, но с упором на безопасность, мультимодальность и совместимость с корпоративной инфраструктурой.

🔑 Главное:
A2A — task-first: агенты обмениваются не сообщениями, а задачами с жизненным циклом (create, update, cancel, complete).
Автоопределение возможностей: каждый агент публикует JSON-«визитку» с описанием своих способностей (capability discovery).
HTTP, SSE, JSON-RPC — всё работает на веб-стеке, легко встраивается в существующие API.
Поддержка текста, аудио и видео — мультимодальность встроена по умолчанию.
Security-first: в отличие от ранних протоколов (как MCP), здесь продумана авторизация и защита данных.

В теории — это мощный инструмент для автоматизации бизнес-процессов.

На практике — уже критикуют за перегруз и неясные перспективы. Но с ресурсами Google — у проекта есть шанс стать отраслевым стандартом.

📌 Отличие между MCP и A2A:
🧠 MCP (Multi-Agent Communication Protocol) — это:
➡️ Протокол, придуманный, чтобы LLM-агенты могли "болтать" друг с другом.
💬 Основан на сообщениях — один агент пишет другому что-то вроде чата, и тот отвечает.
⚙️ Подходит для простых сценариев: «Скажи это», «Спроси у другого», «Придумай план».

Но:
– Без жёсткой структуры
– Нет встроенной безопасности
– Не поддерживает длинные сложные процессы (например, запланировать и потом отчитаться)
– Не заточен под задачи типа "запусти и следи"

🧠 A2A (Agent2Agent) — это:
➡️ Google-версия MCP, но с упором на бизнес и инфраструктуру.
📦 Вместо чатов — структурированные задачи, у которых есть статусы: created, accepted, completed, failed, cancelled.
📛 Поддерживает авторизацию, описание возможностей агента, обратную связь, долгие процессы, аудио и видео.

Проще говоря:
– MCP — это «чат между ИИ»
– A2A — это «Jira для агентов» — задачи, статусы, ролевая модель, безопасность.

google.github.io/A2A

#Google #A2A #agents #AI #protocols #interop #infrastructure