Работает на основе диффузионных моделей для генерации высококачественных изображений,
Позволяет легко выполнять задачи по замене лиц.
git clone https://github.com/hanweikung/face_anon_simple.git
▪Github
▪Demo
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
TinyTroupe 🤠🤓🥸🧐
Microsoft только что выпустила библиотеку Tiny Troupe!🧍♂🧍🧍♀
Это экспериментальная библиотека Python, которая позволяет моделировать людей с определенными личностями, интересами и целями".
Эти агенты могут слушать, отвечать на запросы и жить своей жизнью в симулированной среде TinyWorld.
Sims на на базе LLM😂
- Реклама: Tiny Troupe может оценить цифровую рекламу (например, Bing Ads) в автономном режиме с помощью смоделированной аудитории
- Тестирование программного обеспечения: TinyTroupe может предоставлять тестовые данные системам (например, поисковым системам, чат-ботам или вторым пилотам), а затем оценивать результаты.
- Обучающие и исследовательские данные: TinyTroupe может генерировать реалистичные синтетические данные, которые впоследствии могут быть использованы для обучения моделей или анализа возможностей.
- Управление продуктами и проектами: TinyTroupe может читать предложения по проектам или продуктам и давать отзывы с точки зрения конкретных людей (например, врачей, юристов и работников умственного труда в целом).
- Мозговой штурм: TinyTroupe может имитировать фокус-группы и предоставлять отличные отзывы о продукте!
И многое другое
▪ Github
@data_analysis_ml
Microsoft только что выпустила библиотеку Tiny Troupe!🧍♂🧍🧍♀
Это экспериментальная библиотека Python, которая позволяет моделировать людей с определенными личностями, интересами и целями".
Эти агенты могут слушать, отвечать на запросы и жить своей жизнью в симулированной среде TinyWorld.
Sims на на базе LLM😂
- Реклама: Tiny Troupe может оценить цифровую рекламу (например, Bing Ads) в автономном режиме с помощью смоделированной аудитории
- Тестирование программного обеспечения: TinyTroupe может предоставлять тестовые данные системам (например, поисковым системам, чат-ботам или вторым пилотам), а затем оценивать результаты.
- Обучающие и исследовательские данные: TinyTroupe может генерировать реалистичные синтетические данные, которые впоследствии могут быть использованы для обучения моделей или анализа возможностей.
- Управление продуктами и проектами: TinyTroupe может читать предложения по проектам или продуктам и давать отзывы с точки зрения конкретных людей (например, врачей, юристов и работников умственного труда в целом).
- Мозговой штурм: TinyTroupe может имитировать фокус-группы и предоставлять отличные отзывы о продукте!
И многое другое
▪ Github
@data_analysis_ml
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Что сделано
Полностью решена проблема генерации иероглифов. Проблема часто возникала в кейсах генерации ответов, содержащих смесь русского и английского текста, терминов, сокращений (модель по сути сбивалась).
Применен алгоритм FRT, который позволяет добиваться русификации иностранных моделей.
Благодаря оптимизациям, модель обеспечивает бОльшую связность текста на русском языке, делая её отличным выбором для различных приложений, требующих работы с русскоязычным контентом.
Модель разработана командой FractalGPT специально для генерации текста на русском языке, сохраняя широкую поддержку и для других языков. Cвободно доступна для скачивания на HF
🤗 Карточка модели на HF
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🤗 Watermarking with Gradio: Example
Gradio demo упрощает использование генерации водяных знаков для отслеживания происхождения генераций🚀
Протестируйте здесь: https://huggingface.co/spaces/meg/watermark_demo
#AIEthics #Машинноеобучение
@data_analysis_ml
Gradio demo упрощает использование генерации водяных знаков для отслеживания происхождения генераций🚀
Протестируйте здесь: https://huggingface.co/spaces/meg/watermark_demo
#AIEthics #Машинноеобучение
@data_analysis_ml
Forwarded from Machinelearning
JanusFlow - уникальная комбинация LLM с Rectified Flow и SDXL-VAE для задач понимания и генерации изображений.
Архитектура JanusFlow построена на улучшенной версии DeepSeek-LLM-1.3B, дополненной двумя специализированными энкодерами изображений: SigLIP для задач понимания и ConvNeXt для задач генерации. Разделение энкодеров предотвращает интерференцию задач и повышает эффективность модели.
JanusFlow обучалась в 3 этапа. На первом этапе адаптировались линейные слои, энкодер и декодер генерации.
На втором этапе - унифицированное предварительное обучение всей модели, за исключением визуального энкодера.
На третьем этапе - SFT с использованием инструкций, диалогов и примеров генерации изображений.
В тестах генерации изображений MJHQ FID-30k, GenEval и DPG-Bench, JanusFlow превосходит SD1.5 и SDXL. В тестах понимания MMBench, SeedBench и GQA, JanusFlow превосходит LLaVA-v1.5 и Qwen-VL-Chat.
Локальный запуск возможен в CLI на Transformers и с webUI на Gradio. Примеры CLI-инференса для задач понимания и генерации можно найти в репозитории проекта.
# install the necessary dependencies
pip install -e .
pip install diffusers[torch]
# run local gradio demo
pip install -e .[gradio]
python demo/app_janusflow.py
@ai_machinelearning_big_data
#AI #ML #MMLM #Deepseek #JanusFlow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
В честь 20-летия Half-Life 2, NVIDIA разыгрывают крутые кастомные GeForce RTX 4080 SUPER, которая вдохновлена культовым Гордоном Фримеменом.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/datascienceiot
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/datascienceiot
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Contextual Document Embeddings (CDE) - это метод векторных эмбедингов, разработанный в Cornell University, который учитывает дополнительный контекст из "соседних" документов целевого набора данных.
Метод CDE предлагает добавить к функции встраивания зависимость не только от запроса или документа, но и от всех других документов в наборе данных. Чтобы создать такую функцию с осведомленностью о своем окружении, предлагаются две взаимодополняющих техники:
Тестирование CDE показало, что обе техники улучшают производительность в задачах поиска вне предметной области, а контекстуальная архитектура эффективнее традиционных эмбедингов в специализированных областях: финансах, юриспруденции и медицине.
Для практических экспериментов предлагается блокнот ipynb (или его версия для Google Collab) в котором используется эмбединг-модель cde-small-v1 с 281 млн. параметров, получившая средний балл 65.00 в бенчмарке MTEB leaderboard в категории моделей до 400 млн. параметров. Этот блокнот научит создавать свои собственные эмбединги в контексте вашего набора данных или просто использовать модель как есть.
@ai_machinelearning_big_data
#AI #ML #Embeddings #Retrieval #CDE
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM