Forwarded from Machinelearning
Contextual Document Embeddings (CDE) - это метод векторных эмбедингов, разработанный в Cornell University, который учитывает дополнительный контекст из "соседних" документов целевого набора данных.
Метод CDE предлагает добавить к функции встраивания зависимость не только от запроса или документа, но и от всех других документов в наборе данных. Чтобы создать такую функцию с осведомленностью о своем окружении, предлагаются две взаимодополняющих техники:
Тестирование CDE показало, что обе техники улучшают производительность в задачах поиска вне предметной области, а контекстуальная архитектура эффективнее традиционных эмбедингов в специализированных областях: финансах, юриспруденции и медицине.
Для практических экспериментов предлагается блокнот ipynb (или его версия для Google Collab) в котором используется эмбединг-модель cde-small-v1 с 281 млн. параметров, получившая средний балл 65.00 в бенчмарке MTEB leaderboard в категории моделей до 400 млн. параметров. Этот блокнот научит создавать свои собственные эмбединги в контексте вашего набора данных или просто использовать модель как есть.
@ai_machinelearning_big_data
#AI #ML #Embeddings #Retrieval #CDE
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM