224K subscribers
3.88K photos
654 videos
17 files
4.49K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Top 20 Python AI and Machine Learning Open Source Projects #MachineLearning #ArtificialIntel ligence http://bit.ly/2sHVk9v
⚡️ RouteLLM - фреймворк с открытым исходным кодом для эффективной маршрутизации между несколькими LLM

Метод построения маршрутов (роутеров) использует данные о предпочтениях для обучения управляющего роутера, который может предсказывать, какие запросы могут быть обработаны слабыми моделями, а какие требуют более мощных.

RouteLLM обещает значительное снижение затрат без ущерба для качества ответов. В тестах, таких как MT Bench и MMLU, RouteLLM достиг высокой производительности при меньшем количестве вызовов на мощные модели.

В фреймворке реализована поддержка вызова по API (OpenAI, Anthropic, Google, Amazon Bedrock) и локального бекэнда (Ollama)

Преднастроены 4 роутера, обученных на паре моделей gpt-4-1106-preview и  mixtral-8x7b-instruct-v0.1 :

mf - использует модель матричной факторизации, обученную на данных о предпочтениях
sw_ranking - использует взвешенный расчет ELO для маршрутизации, где каждый голос взвешивается в зависимости от того, насколько он похож на запрос пользователя
bert - использует классификатор BERT
causal_llm - использует классификатор отдельной LLM настроенный на данные о предпочтениях.
random - случайным образом направляет запрос к случайной модели.

🟡Arxiv
🟡Страница проекта
🟡Модели (Augmented for routes) на HF
🖥Github [ Stars: 686 | Forks: 52 | Issues:2]

#LLM #ML #machinelearning #opensource

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍1614🥰1
🧠 ML DIGEST

💬Выпущена Новая TTS модель OuteTTS 0.3, 1 B и 500M

> Zero-shot - клонирование голоса > Многоязычный (en, jp, ko, zh, fr, de)
> Обучен 20 000 часам аудиозаписей
> Работает от OLMo-1B и Qwen 2.5 0.5B
> > Функции контроль скорости речь и эмоций
HF


🤗 Hugging Face выпустили открытый курс по изучению AI-агентов на практике.

За прохождение курса можно получить сертификат и самое главное, что при обучении упор идет на практику.
Вы погрузитесь в популярные фреймворки агентов, такие как LangChain, LlamaIndex и smolagents. Эти инструменты предоставляют строительные блоки для создания сложных поведений агентов.
Записаться можно здесь


🎥 Компания Luma AI только что выпустила #Ray2 - новую модель видео с искусственным интеллектом, которая создает реалистичные видеоролики с естественным и последовательным движением. Поддерживает text-to-video и image-to video. Доступна платно.
Подробнее


🎓 Transformer2: Self-adaptive LLMs

SakanaAi представили новую структуру самоадаптации моделей, при которой LLM адаптируется для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты своих весовых матриц.

Во время вывода используется система диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀
Статья
GitHub


🧞Omni-RGPT: очередная SOTA MLLM
NVIDIA представляли Omni-RGPT, MLLM, для понимания изображений и видео на уровне отдельных объектов и регионов на видео.
Статья
Проект


⚡️ Bespoke Curator
Curator - библиотека с открытым исходным кодом, разработанная для упрощения создания синтетических данных!
Github


🌏 Earth View предлагает огромную коллекцию мультиспектральных изображений
Земли из нескольких спутниковых источников, включая Satellogic, Sentinel-1, NEON и предстоящий Sentinel-2.
HF

@ai_machinelearning_big_data


#ml #news #digest #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2411🔥8
📕 Foundations of Large Language Models

Эта свежая бесплатная книга (и отлично чтиво на выходные) по LLM, которая только что появилась на arXiv.

Более 230+ страниц!

Книга состоит из четырех частей: предварительному обучению, генеративным моделям, промпт-инжинирингу и методам оптимизации LLM.

Это хорошее введение в большие языковые модели для разработчиков и студентов.

📌 Читать

@ai_machinelearning_big_data


#freebook #book #machinelearning #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68🔥2414👾2
🖥 Google опубликовали один из лучших официальных гайдов по ИИ-агентам. И его действительно стоит прочитать.

В нем содержится все, что вам нужно знать:
> Описание агентов, компонентов и когнитивных архитектур.
> Разобраны инструменты по работе с агентами: расширения, написании функций и хранилища данных.
> Описываются методы обучения для повышения производительности агентов.
> Описываются методы создания агентов с использованием LangChain и LangGraph

Читать гайд

@ai_machinelearning_big_data


#aiagents #ai #llm #ml #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
155👍21🔥17❤‍🔥3👏1👀1
⭐️ OpenAI представили своего AI агента.

Operator — это ИИ-агент, который умеет работать с браузером, заказывать продукты, бронировать билеты и столики в ресторанах искать данные и тп.
Вам нужно просто описать свою задачу, а затем наблюдать в реальном времени, как оператор выполняет её за вас.
Доступ пользователям Pro уже открыт, для остальных обещают в ближайшем времени:
operator

⭐️ Open Operator
В преддверии релиза OpenAI Operator разработчики начали собирать полезные ресурсы, связанные с Operator и другими подобными решениями для автоматизации задач:
Github

⭐️ Новый лидер на Text-to-Image Arena! Imagen 3 от Google DeepMind

Imagen 3 дебютирует на первом месте, обойдя Recraft-v3 с впечатляющим отрывом в +70 очков!
Imagen 3 доступен на сайте .

⭐️ "Последний экзамен человечества"

Это тщательно собранный датасет с 3 000 вопросов, разработанный при участии сотен профильных экспертов, чтобы отразить границы человеческих знаний. Лучше всех справляется с ним DeepSeek R1 от, достигая 9.4%, у o1 отставание с 9.1%.
Dataset

⭐️ Можем ли мы генерировать изображения с помощью цепочки мыслей CoT?

Давайте проверим и улучшим генерацию изображений шаг за шагом.
Авторегрессионная генерация изображений + масштабирование выводов приводят к существенному улучшению генерации изображений на нескольких бенчмарках.
Github Статья HF

⭐️ Pika 2.1

Крутейший генератор видео уже на подходе 😁 Движение в реальном времени стало намного лучше!
Здесь, можно подать заявку на ранний доступ:
Доступ

⭐️ o3-mini станет бесплатной — работать с моделью скоро смогут все желающие!
Новость


⭐️ Anthropic. Представили Citations

Новая функция API, которая позволяет Claude обосновывать свои ответы на предоставленных вами источниках.

Еще Claude может процитировать конкретные предложения и отрывки, которые лежат в основе каждого ответа.
Новость

@ai_machinelearning_big_data


#news #ai #ml #machinelearning #deeplearning #openai #pika #chatgpt #Imagen #cot #Anthropic #Claude
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥35👍2811🤣2👾1
🌟 Обучение нейросети поиску локаций по самым непонятным запросам: опыт API Яндекс Карт

Команда API Яндекс Карт поделилась тем, как модернизировала Геокодер. Это инструмент, который способен найти точную локацию по запросу "Мяснитская 8" или вообще "Келес ауданы Сыртав 2".

Инженеры построили весь Геокодер с помощью deep learning, который:
- Работает даже с опечатками и народными названиями
- Понимает адреса на разных языках
- Запускается в новой стране за пару недель
- Использует под капотом контрастивное обучение, active learning, аугментацию и LLM-генерацию
- Показывает результат на 14% точнее предыдущей версии

По заверениям разработчиков, чтобы поддерживать такой Геокодер, достаточно всего пять ML-инженеров.

⭐️ Как это работает и что под капотом — читайте на Хабре.

▪️Статья

@ai_machinelearning_big_data

#ai #ml #machinelearning #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
41👍27🔥9🤬2🤣1
⭐️ Ночью OpenAI выпустила Deep Research — ИИ-агента для проведения исследований анализа и поиска информации.

Вводите промпт и ChatGPT найдет, проанализирует и синтезирует сотни онлайн-ресурсов, чтобы создать развернутый отчет за 10 минут работы, вместо нескольких часов, которые потребовались бы человеку.

Основные моменты:

— Уже доступен для пользователей Pro.
— Агент предоставит полный список источников, а также прокомментирует каждый из них;
— Хорошо подходит для решения задач, связанных с поиском в интернете.
Набрал 26.6 % на «Последнем экзамене человечества».
🟢Подробнее

⭐️WeatherNext продвинутый искусственный интеллект от Google DeepMind для прогнозирования погоды с открытым исходным кодом!

ИИ превосходит существующие методы как по точности, так и по вычислительной эффективности, предлагая обновления прогнозов в реальном времени четыре раза в день через Google Cloud, BigQuery и Earth Engine.
Исследователи могут получить доступ как к текущим, так и к историческим прогнозам для анализа и планирования.

Внутри 2 мощных инструмента:
WeatherNext Graph:
- Формирует единый сверхточный прогноз.
- Обновления происходят каждые 6 часов.
- Предсказания делаются на 10 дней вперёд.
- Выдает прогнозы с максимальной точностью.

WeatherNext Gen:
- Генерирует ансамблевые прогнозы из 50 вероятных сценариев.
- Обновление прогноза происходит каждые 12 часов.
- Модель позволяет лучше оценивать риски экстремальных погодных явлений.

Преимущества над традиционными методами:
- Более высокая скорость обработки данных.
- Значительное повышение точности по сравнению с физическими моделями.
- Опенсорс
🟢Blog

⭐️ Вышло пятичасовое интервью от Lex Fridman с Dylan Patel и Nathan Lambert (Ai2).

Внутри много интересного о DeepSeek, Китае, OpenAI, NVIDIA, xAI, Google, Anthropic, Meta, Microsoft, TSMC, Stargate, строительстве мегакластеров, RL, ризонинге и множестве других тем на передовых ИИ тематик.

Очень интересная и наполненная техническими деталями беседа.
🟢 YouTube 🟢Podcast

⭐️ Ряд интересных обновлений в Qwen Chat!

- Новая модель: Qwen2.5-Plus теперь обновлен до qwen-plus-0125-exp, с новыми методами пост-тренинга. Разрыв с Qwen2.5-Max значительно сократился.
- Гибкие режимы: Убрали все ограничения на переключение между режимами в течение одной сессии! С.
- Неограниченный ввод: Поддержка текстов длиной более 10 000 символов
- Возможность загружайть файлы txt, pdf, docx, xlsx, pptx, md и другие. Теперь длинный ввод не требует усилий.
🟢Попробовать

⭐️ Open-R1: Большой гайд посвященный экспериментам, инструментами, исследованиям и разборам DeepSeek R1!

Резюме самых интересных открытий за первую неделю с момента появления DS.
🟢HF 🟢Github:

⭐️ Гонка ИИ продолжается. Самый богатый человек Индии хочет построить крупнейший в мире центр обработки данных, в пять раз превышающий по мощности крупнейший датацентр Microsoft

Компания Reliance Group Мукеша Амбани, один из крупнейших и наиболее влиятельных индийских конгломератов, строит крупный центр обработки данных в Джамнагаре - небольшом городке в штате Гуджарат, где уже расположены крупные нефтеперерабатывающие и нефтехимические предприятия Reliance.
По сообщениям Bloomberg, общая мощность центра обработки данных, который может стать крупнейшим в мире, составит 3 гигаватта, что значительно увеличит текущую мощность индийских центров обработки данных, которая оценивается менее чем в 1 гигаватт.

Таким образом, он будет в пять раз больше, чем 600-мегаваттный центр Microsoft в Бойдтоне, штат Вирджиния.
🟢Подробнее

⭐️ Google представили метахранилище для Lakehouse!

Метахранилище - это высокомасштабируемый сервис метаданных во время выполнения, который работает с несколькими движками: BigQuery, Apache Spark, Apache Hive и Apache Flink, и поддерживает открытый формат таблиц Apache Iceberg
🟢Подробнее


@ai_machinelearning_big_data


#DeepSeek #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #openai #google #deepmind #qwen #DataAnalytics #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10226🔥10👀2
✔️ Макрон объявил, что Франция планирует инвестировать в развитие ИИ 109 миллиардов евро в ближайшие годы.

Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.

Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.

Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость

✔️OpenAI дебютировал на Super Bowl, выпустив рекламу ChatGPT стоимостью 14 миллионов долларов.
Видео

✔️ ByteDance показали новый генератор видео Goku.

- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv

✔️ Свежий гайд, который поможет вам тренировать свой собственный ризониг LLM.

С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo

✔️ LeRobot — это образовательный проект, направленный на создание бюджетного робота, стоимость каждой руки которого составляет всего 110 долларов. С помощью обычного ноутбука пользователи могут обучать робота различным навыкам.

Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.

На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.

Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github

✔️ Стартап Ильи Суцкевера, сооснователя OpenAI, оценили в $20 миллиардов.

Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.

А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще. Сила имени.
ssi.inc.

@ai_machinelearning_big_data


#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍3812😁7🥱3🤔2🌚1😭1
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥4510💘3😁1
🌟 Step-Video-TI2V: новый опенсорс генератрор видео из текста и изображения.

Команда StepFun AI выпустила Step-Video-TI2V модель для генерации видео (до 102 кадров), производительностью SOTA.
Принимает на вход текстовые описания и изображенияъ 🖼️ + ✍️ = 🎬

На бенчмарке VBench-I2V, моделька показывает лучшие результаты по сравнению с другими современными открытыми моделями для генерации видео из изображения и текста, а также лидирует в публичном рейтинге.

Ключевые особенности:

Контроль движения: Модель предлагает достойный баланс между стабильностью движения и гибкостью, позволяя управлять динамикой в кадре.
Разнообразные движения камеры: Поддерживается имитация различных движений виртуальной камеры для создания более кинематографичных эффектов.
Мастер аниме-стиля: Step-Video-TI2V особенно преуспевает в генерации видео в стиле аниме, открывая новые возможности для фанатов и создателей контента!
Поддержка разных разрешений: Модель может генерировать видео в нескольких вариантах размеров.

🟢GitHub
🟢Попробовать
🟢ComfyU
🟢HF
🟢Modelscope
🟢Tech Report

@ai_machinelearning_big_data



#AI #VideoGeneration #TextToVideo #ImageToVideo #GenerativeAI #MachineLearning #StepFunAI #ИИ #ГенерацияВидео #Нейросети #Аниме #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4111🔥5🤔2🌚1
🔥 BPT - это новый способ токенизации данных для создания 3D-моделей.

Ключевое достижение: Метод обладает рекордно высоким (State-of-the-Art) коэффициентом сжатия данных - 75%!

BPT использует блочную индексацию и агрегацию патчей, что позволяет уменьшить длину последовательностей мэшей примерно на 75% по сравнению с исходными данными.

Это значительно повышает эффективность обработки и генерации высокодетализированных 3D-моделей.

Преимущество: Такое сжатие позволяет эффективно генерировать высокодетализированные 3D-модели, содержащие более 8000 граней (полигонов).

BPT - очень перспективный подходя для 3D-моделирования.

Он позволяет создавать детализированные и топологически точные модели с использованием компактных и эффективных представлений данных.

🟡Подробнее
🟡Github

@ai_machinelearning_big_data


#ml #ai #machinelearning #3d
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35🔥206
🔥 DeepSeek-GRM

Команда DeepSeek представила DeepSeek-GRM (Generalist Reward Modeling) - новую систему для моделирования вознаграждения (RM), цель которой - улучшить согласованность LLM с общими запросами (general query alignment).

✔️ Ключевая идея: Использовать дополнительные вычисления во время инференса для динамического улучшения и масштабирования оценки вознаграждения, отходя от чисто статических RM.

✔️ Как работает: Комбинирует генеративное RM (GRM), метод обучения Self-Principled Critique Tuning (SPCT - модель учится сама генерировать принципы и критику через RL), параллельный сэмплинг и голосование во время инференса.

✔️ Результаты: Подход превосходит существующие базовые модели на RM-бенчмарках, не теряя в качестве.

DeepSeek-GRM предлагает новый масштабируемый способ построения более надежных и универсальных систем вознаграждения.

DeepSeek-GRM-27B с масштабированием во время инференса показывает SOTA (или близкие к SOTA) результаты на RM бенчмарках, будучи при этом эффективнее по параметрам, чем гигантские модели, и имея меньше проблем с систематическими ошибками.

🟡Метод обучения SPCT улучшает способность GRM к генерации вознаграждения для общих задач (generalist capability) и его масштабируемость во время инференса.

LLM-as-a-Judge показывает схожие показатели, но с более низкой производительностью.

Это интересный вектор развития RM, переносящий часть "интеллекта" оценки на этап инференса для повышения качества моделей.

🟡 Подробности в статье

#LLM #AI #MachineLearning #RewardModeling #DeepSeek #ReinforcementLearning #NLP #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥167🤬1
🔥 Text‑to‑FILM становится реальностью!

SkyReels‑V2 - опенсорс генератор видео из текста, который не только соперничает с лучшими закрытыми решениями, но и предлагает уникальное преимущество — теоретически неограниченную длину генераций.

✔️ Что умеет SkyReels V2:

- Story Generation: полный конвейер от генерации текста до последовательного сюжета для видео.
- Image‑to‑Video
- Camera Director: управление виртуальной камерой — смена углов, зум, трекинг.
- Elements‑to‑Video: генерация отдельных объектов или эффектов, которые затем интегрируются в общий видеоряд.

🌟 Режимы инференса: поддерживаются как синхронный (full‑sequence diffusion), так и асинхронный (Diffusion Forcing) режимы для гибкой работы на разных GPU-конфигурациях

На бенчмарках SkyReels V2 лидирует среди открытых моделей на VBench с 83.9%, оставляя позади Wan2.1, HunyuanVideo и OpenSora 2.0.


Попробовать
Github
Technical Report
Hugging Face
ModelScope

@ai_machinelearning_big_data


#AI #TextToFilm #VideoGeneration #SkyReelsV2 #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥3216🤣12
🚀Прорыв от Google: активное обучение с экономией данных на 10 000× при дообучении LLM

Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.

🟢 Как работает метод:
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.

🟢Результаты:
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.

🟢 Что такое Cohen’s Kappa?
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).

Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).

🟢Вывод:
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.

#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency

🟠Почитать подробно

@ai_machinelearning_big_data


#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍104🔥22193🥰3
🚀 Hunyuan-Large-Vision: новая мощная мультимодальная модель от Tencent

🔹 MoE-архитектура — 389B параметров (52B активных) для оптимального баланса мощности и эффективности.
🔹 Лидер в рейтингах — 1256 баллов в LMArena Vision, #1 в Китае, на уровне GPT-4.5 и Claude-4-Sonnet.
🔹 Глубокое понимание — визуальное рассуждение, анализ видео и 3D-пространства, 79,5 баллов в среднем по бенчмарку OpenCompass.

📌 Модель дополняет линейку Hunyuan-TurboS-Vision и Hunyuan-T1-Vision, доступных через Tencent Cloud для задач в самых разных отраслях.

🟢Попробовать: https://hunyuan.tencent.com/modelSquare/home/list?modelKey=VisionUnderstand
🟢 Блог: https://vision.hunyuan.tencent.com
🟢API: https://cloud.tencent.com/document/product/1729/104753

@ai_machinelearning_big_data


#AI #Multimodal #MachineLearning #MoE #VisionAI #Tencent #Hunyuan #LLM #ComputerVision #3DVision
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3913🔥11
🎮 Matrix-Game 2.0 — первая опенсорс модель, которая генерирует интерактивные 3D-миры из текста в реальном времени


Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.

А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀

Возможности:

🟢25 кадров/с в реальном времени
🟢Генерирует минуты непрерывного геймплея
🟢Полная интерактивность: движение, повороты, исследование мира

Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.

Зачем это нужно:
🟠Создание игровых движков
🟠Тренировка AI-агентов
🟠Создание виртуальных персонажей

Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).

Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени

🟡Huggingface Model: https://huggingface.co/Skywork/Matrix-Game-2.0
🟡 Repo: https://matrix-game-v2.github.io

@ai_machinelearning_big_data

#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥81👍2922🥱4😐3