Forwarded from Data Science by ODS.ai 🦜
Solving Mixed Integer Programs Using Neural Networks
Article on speeding up Mixed Integer Programs with ML. Mixed Integer Programs are usually NP-hard problems:
- Problems solved with linear programming
- Production planning (pipeline optimization)
- Scheduling / Dispatching
Or any problems where integers represent various decisions (including some of the graph problems).
ArXiV: https://arxiv.org/abs/2012.13349
Wikipedia on Mixed Integer Programming: https://en.wikipedia.org/wiki/Integer_programming
#NPhard #MILP #DeepMind #productionml #linearprogramming #optimizationproblem
Article on speeding up Mixed Integer Programs with ML. Mixed Integer Programs are usually NP-hard problems:
- Problems solved with linear programming
- Production planning (pipeline optimization)
- Scheduling / Dispatching
Or any problems where integers represent various decisions (including some of the graph problems).
ArXiV: https://arxiv.org/abs/2012.13349
Wikipedia on Mixed Integer Programming: https://en.wikipedia.org/wiki/Integer_programming
#NPhard #MILP #DeepMind #productionml #linearprogramming #optimizationproblem
This media is not supported in your browser
VIEW IN TELEGRAM
Это AI для разработки новых белков. Он поможет в разработке лекарств, для лечения рака, аутоиммунных заболеваний, а так же лечения множества других заболеваний 🧬
Ученые предрекают возможность создания нового белкового материала, который будет связываться с белками, участвующими в передаче сигналов между раковыми клетками, нарушая их функцию и вызывая их гибель
Исследователи смогу смоделировать и лучше понять, как функционируют биологические системы, сэкономить время на исследованиях, усовершенствовать разработку лекарств и многое другое. 🧵
Анонс
Статья
@ai_machinelearning_big_data
#deepmind #ai #ml #biology #biotech
Please open Telegram to view this post
VIEW IN TELEGRAM
AlphaFold 3 — конвейер логического вывода системы ИИ, разработанной Google DeepMind, которая произвела революцию в области прогнозирования структуры белков.
Пакет AlphaFold 3 включает в себя все необходимое для теоретического моделирования структуры белка. Для запуска системы необходимо сконфигурировать входной файл JSON, содержащий информацию о белке, например, его идентификатор и аминокислотную последовательность.
Вместе с программным конвейером инференса доступна подробная документация по входным и выходным данным системы, решению известных проблем, настройкам производительности и установке с последующим запуском с помощью Docker.
Для локального использования понадобится ОС Linux (AlphaFold 3 не поддерживает другие операционные системы) примерно 1 ТB дискового пространства для хранения генетических баз данных (рекомендуется SSD), 64 GB RAM, GPU NVIDIA с Compute Capability 8.0 или выше.
Исходные данные, содержащие 5120 токенов, могут поместиться на одном NVIDIA A100 80 ГБ или одном NVIDIA H100 80 ГБ.
⚠️ Получение параметров модели возможно через подачу заявки в Google DeepMind, доступ предоставляется в течении 2-3 дней по итогам рассмотрения обращения.
⚠️ Любая публикация, основанная на результатах, полученных с использованием AlphaFold 3, должна ссылаться на статью «Accurate structure prediction of biomolecular interactions with AlphaFold 3».
⚠️ AlphaFold 3 не является официально поддерживаемым продуктом Google и ее результаты не предназначены, не проверены и не одобрены для клинического использования.
@ai_machinelearning_big_data
#AI #ML #DeepMind #AlfaFold3
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Вводите промпт и ChatGPT найдет, проанализирует и синтезирует сотни онлайн-ресурсов, чтобы создать развернутый отчет за 10 минут работы, вместо нескольких часов, которые потребовались бы человеку.
Основные моменты:
— Уже доступен для пользователей Pro.
— Агент предоставит полный список источников, а также прокомментирует каждый из них;
— Хорошо подходит для решения задач, связанных с поиском в интернете.
— Набрал 26.6 % на «Последнем экзамене человечества».
ИИ превосходит существующие методы как по точности, так и по вычислительной эффективности, предлагая обновления прогнозов в реальном времени четыре раза в день через Google Cloud, BigQuery и Earth Engine.
Исследователи могут получить доступ как к текущим, так и к историческим прогнозам для анализа и планирования.
Внутри 2 мощных инструмента:
WeatherNext Graph:
- Формирует единый сверхточный прогноз.
- Обновления происходят каждые 6 часов.
- Предсказания делаются на 10 дней вперёд.
- Выдает прогнозы с максимальной точностью.
WeatherNext Gen:
- Генерирует ансамблевые прогнозы из 50 вероятных сценариев.
- Обновление прогноза происходит каждые 12 часов.
- Модель позволяет лучше оценивать риски экстремальных погодных явлений.
Преимущества над традиционными методами:
- Более высокая скорость обработки данных.
- Значительное повышение точности по сравнению с физическими моделями.
- Опенсорс
Внутри много интересного о DeepSeek, Китае, OpenAI, NVIDIA, xAI, Google, Anthropic, Meta, Microsoft, TSMC, Stargate, строительстве мегакластеров, RL, ризонинге и множестве других тем на передовых ИИ тематик.
Очень интересная и наполненная техническими деталями беседа.
- Новая модель: Qwen2.5-Plus теперь обновлен до qwen-plus-0125-exp, с новыми методами пост-тренинга. Разрыв с Qwen2.5-Max значительно сократился.
- Гибкие режимы: Убрали все ограничения на переключение между режимами в течение одной сессии! С.
- Неограниченный ввод: Поддержка текстов длиной более 10 000 символов
- Возможность загружайть файлы txt, pdf, docx, xlsx, pptx, md и другие. Теперь длинный ввод не требует усилий.
Резюме самых интересных открытий за первую неделю с момента появления DS.
Компания Reliance Group Мукеша Амбани, один из крупнейших и наиболее влиятельных индийских конгломератов, строит крупный центр обработки данных в Джамнагаре - небольшом городке в штате Гуджарат, где уже расположены крупные нефтеперерабатывающие и нефтехимические предприятия Reliance.
По сообщениям Bloomberg, общая мощность центра обработки данных, который может стать крупнейшим в мире, составит 3 гигаватта, что значительно увеличит текущую мощность индийских центров обработки данных, которая оценивается менее чем в 1 гигаватт.
Таким образом, он будет в пять раз больше, чем 600-мегаваттный центр Microsoft в Бойдтоне, штат Вирджиния.
Метахранилище - это высокомасштабируемый сервис метаданных во время выполнения, который работает с несколькими движками: BigQuery, Apache Spark, Apache Hive и Apache Flink, и поддерживает открытый формат таблиц Apache Iceberg
@ai_machinelearning_big_data
#DeepSeek #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #openai #google #deepmind #qwen #DataAnalytics #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
- На Арене Gemini-2.0-Pro (контекстное окно размером 2 млн) занимает 1-е место во всех категориях
- Gemini-2.0-Flash- 3-место в кодинге, математике и категории «Hard Prompts»
- Gemini-2.0-Flash топ-3 в категориях
- Gemini 2.0 Flash-Lite в топ-10 по всем категориям.
Что касается ризонинга, то в приложении Gemini также появилась версия
Flash Thinking Experimental
2.0
, которая в настоящее время так же занимает лидирующие позиции в рейтинге LM Arena .https://developers.googleblog.com/en/gemini-2-family-expands/
@ai_machinelearning_big_data
#Gemini #google #deepmind #Gemini2
Please open Telegram to view this post
VIEW IN TELEGRAM
Методология анализирует все этапы атаки: от разведки до эксплуатации уязвимостей — и показывает, как ИИ может помочь хакерам, автоматизируя процессы взлома. В основе исследования — данные о 12 тыс. реальных случаев применения ИИ в атаках из 20 стран, из которых было выделено 7 ключевых категорий угроз.
Специалисты создали бенчмарк из 50 задач - от разработки вредоносного кода и поиска уязвимостей до выполнения взлома. Он поможет безопасникам тестировать защиту и готовиться к сценариям, где ИИ ускоряет атаки. Пока современные модели не дают злоумышленникам решающего преимущества, но с развитием риски вырастут.
Особое внимание в исследовании уделено этапам, которые часто упускают: маскировка атак и долгосрочный доступ к системам.
🔗 deepmind.google
@ai_machinelearning_big_data
#DeepMind #security
Please open Telegram to view this post
VIEW IN TELEGRAM
TIME включил Демиса Хассабиса, генерального директора Google DeepMind, в список 100 самых влиятельных людей мира в 2025 году. Это признание его выдающегося вклада в развитие искусственного интеллекта и науки.
В 2024 году Хассабис был удостоен Нобелевской премии по химии за создание AlphaFold — ИИ-системы, способной предсказывать структуру белков, что значительно ускорило научные исследования в области медицины и биологии.
Однако Хассабис не останавливается на достигнутом. Он активно работает над созданием AGI, который сможет решать сложнейшие задачи, такие как борьба с болезнями, изменение климата и дефицит ресурсов. Хассабис считает, что AGI может быть разработан в течение ближайших 5–10 лет.
Time
Тем не менее, он осознаёт риски, связанные с развитием AGI, включая возможные угрозы демократии и потенциальное использование технологий в военных целях. Хассабис призывает к международному сотрудничеству и созданию надёжных механизмов безопасности для обеспечения того, чтобы AGI служил на благо человечества.
Time
@ai_machinelearning_big_data
#AI #AGI #DeepMind #DemisHassabis #TIME100 #Наука #Технологии
Please open Telegram to view this post
VIEW IN TELEGRAM
🪰 Виртуальная дрозофила: зачем DeepMind «оживили» плодовую мушку — и что это даёт науке
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
🌟 Как это сделали:
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
✔️ Зачем это нужно
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
🔥 Что это даёт
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
✔️ Посмотреть код, скомпилировать модель и погонять виртуальную мушку можно уже сейчас:
🔜 GitHub
🔜 Статья в Nature
@ai_machinelearning_big_data
#DeepMind #nature #science
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
.
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
@ai_machinelearning_big_data
#DeepMind #nature #science
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Google DeepMind представили AlphaEvolve — агент на базе Gemini, способный автоматически генерировать новые алгоритмы и находить оптимальные решения сложных задач.
🔘 Генерирует быстрые алгоритмы умножения матриц
🔘 Находит новые решения математических задач
🔘 Оптимизирует работу дата-центров, чипов и обучения ИИ модель за счёт сгенерированный алгоритмов
1) Генерация идей с помощью LLMs: Модель Gemini анализирует существующие подходы к решению задачи и предлагает новые алгоритмические идеи, используя свой широкий контекст и знания.
2) Автоматическая оценка: Каждый предложенный алгоритм проходит через систему автоматической оценки, которая измеряет его эффективность, точность и другие ключевые метрики, позволяя объективно сравнивать различные решения.
3) Эволюционное улучшение: AlphaEvolve применяет эволюционные методы, такие как мутация и рекомбинация, чтобы постепенно улучшать алгоритмы, объединяя лучшие элементы из различных решений и отбрасывая менее эффективные варианты.
Этот подход уже продемонстрировал свою эффективность: AlphaEvolve смог обнаружить новые, более эффективные алгоритмы умножения матриц, превосходящие предыдущие достижения, такие как AlphaTensor. Это открывает возможности для оптимизации вычислений в дата-центрах, проектировании чипов и обучении ИИ-моделей.
Google также применили AlphaEvolve к более чем 50 открытым задачам в области:
✍️ математического анализа,
📐 геометрии,
➕ комбинаторики и
🔂 теории чисел — включая задачу о числе поцелуев (kissing number problem).
🔵 В 75% случаев агент открыл лучшее из известных решений.
🔵 В 20% случаев он улучшил ранее известные решения, тем самым сделав новые открытия.
Доступ пока не дают, но выглядит очень интересно.
@ai_machinelearning_big_data
📎 Подробнее
#google #DeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM