Complete Guide to Topic Modeling with scikit-learn and gensim
#MachineLearning #NLP #Python
Article: https://buff.ly/2m5586Y
#MachineLearning #NLP #Python
Article: https://buff.ly/2m5586Y
NLP-FOR-HACKERS
Complete Guide to Topic Modeling - NLP-FOR-HACKERS
In this tutorial, we learn all there is to know about the basics of topic modeling. Explore LDA, LSA and NMF algorithms. Learn how to visualize topics.
Facebook has released #PyText — new framework on top of #PyTorch.
This framework is build to make it easier for developers to build #NLP models.
https://code.fb.com/ai-research/pytext-open-source-nl..
Github: https://github.com/facebookresearch/pytext
This framework is build to make it easier for developers to build #NLP models.
https://code.fb.com/ai-research/pytext-open-source-nl..
Github: https://github.com/facebookresearch/pytext
Engineering at Meta
Open-sourcing PyText for faster NLP development
To make it easier to build and deploy natural language processing (NLP) systems, we are open-sourcing PyText, a modeling framework that blurs the boundaries between experimentation and large-scale …
GraphRAG использует графы знаний для улучшения ответов на запросы. Во время запроса система обращается к графу знаний и использует резюме сообществ и связи между сущностями для формирования контекста, который помогает LLM дать более точный ответ, чем традиционные методы, основанные на поиске по векторным сходствам.
Архитектура GraphRAG состоит из ключевых компонентов:
Indexer : разделяет корпус данных на мелкие текстовые блоки (TextUnits), извлекает из них сущности, связи и ключевые утверждения.
Clustering : группирует данные в иерархическую структуру с использованием метода Лейдена, создавая граф знаний.
Community Summarization : генерирует обобщенные описания для каждой группы данных, что помогает в понимании контекста и смыслового связывания всей информации.
Knowledge Graph : структура, объединяющая сущности и их связи, созданная на основе данных.
GraphRAG значительно улучшает работу моделей языка с частными данными, позволяя им более точно и полно отвечать на сложные вопросы, требующие синтеза информации из разных источников.
⚠️ Рекомендации и предупреждения:
- Эффективность индексации зависит от правильной идентификации понятий
- Индексация может быть дорогостоящей, рекомендуется создание тестового набора данных
- Система предназначена для опытных пользователей в предметной области
- Необходим анализ ответов человеком для получения достоверной информации
- Методология наиболее эффективна на текстовых данных с общей темой и множеством сущностей
📄 Документация:
🟡Страница проекта
🟡Arxiv
@ai_machinelearning_big_data
#LLM #GraphRAG #ML #RAG #NLP #Deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
WordLlama — это быстрый и легкий набор инструментов для обработки естественного языка для задач нечеткой дедупликации, оценки сходства и ранжирования слов.
Он оптимизирован для CPU и способен создавать эффективные представления текстовых лексем, используя компоненты из больших языковых моделей, например LLama3.
Ключевые особенности WordLlama:
Эксперименты на наборе данных MTEB показывают, что WordLlama превосходит GloVe 300d по всем показателям, несмотря на значительно меньший размер (16 МБ против >2 ГБ).
WordLlama демонстрирует высокую производительность в задачах кластеризации, реранжирования, классификации текстов и семантического поиска.
В будущем разработчики планируют добавить функции для семантического разделения текста, а также примеры блокнотов и конвейеры RAG.
@ai_machinelearning_big_data
#AI #ML #Toolkit #NLP #WordLlama
Please open Telegram to view this post
VIEW IN TELEGRAM
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone git@github.com:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Совместное исследование Google Research, Принстонского университета, NYU и Еврейского университета в Иерусалиме нашло параллели в обработке естественного языка человеческим мозгом и большими языковыми моделями.
Используя внутричерепные электроды, ученые зафиксировали нейронную активность во время спонтанных диалогов и сравнили ее с внутренними представлениями модели Whisper, разработанной для преобразования речи в текст. Оказалось, что речевые эмбеддинги Whisper коррелируют с активностью в слуховых зонах мозга, а языковые — с областями, ответственными за семантику.
Эксперименты подтвердили догадки: при восприятии речи сначала активируется верхняя височная извилина (STG), обрабатывающая акустические сигналы, а через несколько сотен миллисекунд включается зона Брока (IFG), связанная с декодированием смысла. При воспроизведении речи последовательность обратная: IFG активируется за 500 мс до артикуляции, затем моторная кора планирует движение, а после произнесения слова STG «проверяет» результат. Эти паттерны совпали с динамикой эмбедингов Whisper, хотя модель не обучалась на нейробиологических данных.
Другое интересное совпадение - мозг и LLM используют предсказание следующего слова как ключевую стратегию. Как показали опыты, слушатель бессознательно предугадывает следующие слова, а ошибка предсказания вызывает «нейронное удивление» — механизм, аналогичный обучению с подкреплением в ML. Но архитектурные механизмы у мозга и LLM разные: трансформеры обрабатывают сотни слов параллельно, тогда как мозг анализирует информацию последовательно.
Несмотря на общую «мягкую иерархию» обработки (например, смешение семантических и акустических признаков в IFG и STG), биологические структуры мозга принципиально отличаются от нейронных сетей.
Исследователи подчеркивают: языковые модели (типа ChatGPT) не понимают, как люди общаются в реальной жизни (например, не чувствуют эмоций или культурных особенностей), и не учатся так, как это делает мозг человека с детства. Однако их эмбединги оказались очень полезными для изучения того, как мозг обрабатывает речь.
Ученые надеются, что эти открытия помогут создать нейросети, которые смогут обучаться как люди — медленно, шаг за шагом. А пока Whisper, неожиданно стал «зеркалом» принципов нашего мышления. Кто знает, может, через пару лет ИИ начнёт шутить с нами за чашкой кофе — как друг или коллега по работе.
@ai_machinelearning_big_data
#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Ant Group успешно использовала хардверные решения от Alibaba и Huawei для обучения своих моделей, что позволило сократить затраты примерно на 20%. Результаты тестов показали, что китайские чипы сопоставимы по производительности с Nvidia H800. Хотя Ant Group пока полностью не отказывается от Nvidia для разработки ИИ, ее последние разработки в основном полагаются на альтернативные решения - AMD и чипы китайского производства.
Это свидетельствует о том, что китайские компании ускоряют локализацию технологий искусственного интеллекта, чтобы сократить затраты и уменьшить зависимость от американских чипов.
bloomberg.com
Итальянская газета Il Foglio начала месячный эксперимент, опубликовав первый в мире газетный выпуск, сгенерированный искусственным интеллектом. Цель эксперимента - изучить влияние ИИ на журналистику, используя ChatGPT для создания контента.
Редактор газеты Клаудио Сераса заявил, что ИИ использовался на всех этапах создания - от написания текстов и заголовков до цитат и резюме, при этом журналисты редакции участвуют в создании промптов для ИИ и проверке сгенерированных текстов.
asianfin.com
Команда ARC Prize запустила 2 этап бенчмарка ARC-AGI-2 для оценки «гибкости мышления» ИИ через задачи, которые человек решает за секунды, а алгоритмы — с трудом. Как и в прошлой версии, система проверяет способность к обобщению знаний, но теперь барьер выше: на нем базовые LLM набирают 0%, а продвинутые — меньше 4%. Призовой фонд бенчмарка -1 млн. долларов, главный приз получит разработка, которая сможет превысить 85% выполнения бенчмарка.
Решение задач ARC-AGI-2 требует интуиции и адаптивности — того, что в людях заложено природой. «Это не тест на эрудицию, а проверка умения мыслить вне данных», — поясняют разработчики.
arcprize.org
Компания The Atlantic разработала поисковый инструмент, позволяющий пользователям проверить, не фигурирует ли их работа в LibGen - архиве книг, научных работ и статей, который, как сообщается, использовался для обучения популярных языковых моделей.
Согласно судебным документам, набор данных LibGen использовался для обучения моделей Llama. OpenAI уже публично сообщила, что контент LibGen не включен в текущие версии ChatGPT или в API OpenAI. Другие компании, занимающиеся разработкой ИИ, пока не комментировали, использование LibGen в своем обучении.
theatlantic.com
Китайская модель OceanDS, созданная для морских исследований, опирается на уникальную базу из 1,8 млрд токенов данных. В неё вошли оцифрованные научные работы, книги и отчёты — всё, что касается океана.
По тестам OceanDS обходит топовые LLM в точности ответов на профильные запросы — разрыв достигает 25%. Это первый в мире ИИ, заточенный под океанографию. Уже сейчас его тестируют в управлении природными ресурсами Китая, а в будущем — внедрят в другие отрасли.
news.cgtn.com
@ai_machinelearning_big_data
#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
ByteDance представила InfiniteYou — ИИ-систему, которая генерирует фотореалистичные портреты, сохраняя сходство с оригиналом и точно следуя текстовым запросам. В отличие от PuLID-FLUX, в InfiniteYou черты лица обрабатываются отдельным слоем, что повышает качество без риска переобучения.
Технология использует двухэтапное обучение: сначала на реальных фото, затем — на синтетических изображениях. По данным тестов, 72,8% участников выбрали результаты InfiniteYou из-за детализации и отсутствия артефактов вроде «копирования» лиц. Система совместима с ControlNet и LoRA, а для генерации нужно всего 4 шага.
Исходный код и веса модели уже доступны на GitHub и Hugging Face, демо-версия доступна тут.
analyticsindiamag.com
Компания NVIDIA анонсировала экспериментальный релиз Project G-Assist — ИИ-агента, использующего компактную языковую модель, которая обрабатывает голосовые или текстовые запросы, оптимизируя настройки игр, мониторинг производительности и даже управление подсветкой периферии от Logitech или Corsair. Всё работает оффлайн, без подписок и облачных серверов.
Для разработчиков открыт доступ к GitHub-репозиторию: там есть шаблоны для создания плагинов, интеграции со Spotify, Twitch или Google Gemini. Технические требования — RTX 30/40/50 серии, 12 ГБ видеопамяти и свежие драйверы.
nvidia.com
Figure разработала революционный метод обучения человекоподобных роботов — кастомная end-to-end нейросеть на основе RL за несколько часов «прокачала» движения Figure 02 до уровня естественной человеческой походки.
Все благодаря симулятору, где тысячи виртуальных роботов учились ходить по разным поверхностям, падать и реагировать на толчки. Ключевая фишка — перенос навыков из симуляции в реальность без доработок: помогли рандомизация параметров и мгновенная коррекция крутящего момента. Обещают, что уже скоро робот Helix на этой же базе сможет готовить и убираться.
figure.ai
Apple обновила раздел сайта, подтвердив использование снимков из Look Around (аналог Street View) для тренировки ИИ-моделей с марта 2025 года. Данные, собранные камерами на автомобилях и с переносных инсталляций (для пешеходных зон), включая 3D-карты, помогут улучшить распознавание изображений, генерацию контента и поиск в приложении «Фото».
Для защиты приватности Apple блюрит лица и номера машин на фото, а также готова скрыть частные строения по запросу. Обучение моделей будет проводиться только с обработанными изображениями. Подробности о конкретных алгоритмах компания пока не раскрывает, возможно о них станет известно на WWDC 2025, который пройдет с 9 по 13 июня.
9to5mac.com
Tesla присоединится к симпозиуму по робототехнике в Капитолии, чтобы продемонстрировать своего человекоподобного робота Optimus конгрессменам и сотрудникам Белого дома. Мероприятие, организованное A3 Automate и Университетом Карнеги-Меллон. пройдёт в 26 марта в здании Cannon House Office.
В приглашении Tesla подчеркивает, что робот позволит «заглянуть в будущее», и приглашает всех желающих оценить разработку.
axios.com
Бот
@ai_machinelearning_big_data
#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.
Книга разделена на три части, включающие 24 основные главы и 8 приложений.
Темы охватывают широкий спектр, включая:
Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.
Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.
@ai_machinelearning_big_data
#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM
Команда DeepSeek представила DeepSeek-GRM (Generalist Reward Modeling) - новую систему для моделирования вознаграждения (RM), цель которой - улучшить согласованность LLM с общими запросами (general query alignment).
DeepSeek-GRM предлагает новый масштабируемый способ построения более надежных и универсальных систем вознаграждения.
DeepSeek-GRM-27B с масштабированием во время инференса показывает SOTA (или близкие к SOTA) результаты на RM бенчмарках, будучи при этом эффективнее по параметрам, чем гигантские модели, и имея меньше проблем с систематическими ошибками.
LLM-as-a-Judge показывает схожие показатели, но с более низкой производительностью.
Это интересный вектор развития RM, переносящий часть "интеллекта" оценки на этап инференса для повышения качества моделей.
#LLM #AI #MachineLearning #RewardModeling #DeepSeek #ReinforcementLearning #NLP #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.
Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
@ai_machinelearning_big_data
#AI #ML #LLM #CV #NLP #FAIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM