⭐️ Pandera — это библиотека на Python, которая облегчает валидацию датафреймов pandas.
Она также совместима с быстрой и легкой библиотекой Polars.
Используя Pandera, вы можете быть уверены, что ваши датафреймы Polars имеют правильную структуру и будут работать корректно.
Установить можно с помощью команды: pip install pandera
▪ Github (https://github.com/unionai-oss/pandera)
▪ Документация (https://pandera.readthedocs.io/)
#Pandera #python #opensource #Polars
@Python_Community_ru
Она также совместима с быстрой и легкой библиотекой Polars.
Используя Pandera, вы можете быть уверены, что ваши датафреймы Polars имеют правильную структуру и будут работать корректно.
Установить можно с помощью команды: pip install pandera
▪ Github (https://github.com/unionai-oss/pandera)
▪ Документация (https://pandera.readthedocs.io/)
#Pandera #python #opensource #Polars
@Python_Community_ru
🖥 PyRoki — модульный инструмент для оптимизации кинематики роботов
На GitHub и в preprint на arXiv появилась новая работа от исследователей из Berkeley — PyRoki (Python Robot Kinematics Toolkit). Это мощный, гибкий и кроссплатформенный инструмент на Python для задач оптимизации в робототехнике.
🔧 Что такое PyRoki?
PyRoki — это:
- 📦 Модульная архитектура
Разделение переменных оптимизации и функций стоимости (costs) позволяет комбинировать задачи IK, планирования траектории, ретаргетинга и многое другое — без повторения кода.
- ⚙️ Дифференцируемая кинематика
Поддержка URDF-моделей, автоматическое создание collision-примитивов (например, капсул), работа с NumPy и JAX.
- 🚀 Поддержка CPU, GPU и TPU
Высокая производительность и масштабируемость на любых вычислительных устройствах.
- 🧠 Оптимизация на многообразиях (Lie-группы)
Встроенный алгоритм Levenberg–Marquardt даёт устойчивую и быструю сходимость даже для сложных конфигураций.
📊 Результаты
- Быстрее cuRobo на 1.4–1.7x при решении задач IK в батче.
- Более точные результаты при меньших вычислительных затратах.
- Интерактивный визуализатор (на базе `viser`) для отладки и анализа.
📁 Примеры использования
PyRoki включает в себя готовые сценарии:
- инверсная кинематика (IK)
- бимануальные манипуляции
- мобильные платформы
- ретаргетинг движений гуманоидов
- учёт столкновений
- online-планирование и управление
🚀 Установка
git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .
Требуется Python 3.12+ (частичная поддержка Python 3.10–3.11).
PyRoki — это:
- 📐 Удобный фреймворк для исследований в области робототехники.
- 🛠️ Подходит как для академических, так и для прикладных задач.
- 🌐 Гибкий и масштабируемый — от одного робота до больших motion-баз.
Если интересен пример интеграции с ROS, Gazebo или симуляцией цифрового двойника — дай знать, покажу!
🔗 Репозиторий (https://github.com/chungmin99/pyroki)
#Python #Robotics #Kinematics #InverseKinematics #MotionPlanning #OpenSource
@Python_Community_ru
На GitHub и в preprint на arXiv появилась новая работа от исследователей из Berkeley — PyRoki (Python Robot Kinematics Toolkit). Это мощный, гибкий и кроссплатформенный инструмент на Python для задач оптимизации в робототехнике.
🔧 Что такое PyRoki?
PyRoki — это:
- 📦 Модульная архитектура
Разделение переменных оптимизации и функций стоимости (costs) позволяет комбинировать задачи IK, планирования траектории, ретаргетинга и многое другое — без повторения кода.
- ⚙️ Дифференцируемая кинематика
Поддержка URDF-моделей, автоматическое создание collision-примитивов (например, капсул), работа с NumPy и JAX.
- 🚀 Поддержка CPU, GPU и TPU
Высокая производительность и масштабируемость на любых вычислительных устройствах.
- 🧠 Оптимизация на многообразиях (Lie-группы)
Встроенный алгоритм Levenberg–Marquardt даёт устойчивую и быструю сходимость даже для сложных конфигураций.
📊 Результаты
- Быстрее cuRobo на 1.4–1.7x при решении задач IK в батче.
- Более точные результаты при меньших вычислительных затратах.
- Интерактивный визуализатор (на базе `viser`) для отладки и анализа.
📁 Примеры использования
PyRoki включает в себя готовые сценарии:
- инверсная кинематика (IK)
- бимануальные манипуляции
- мобильные платформы
- ретаргетинг движений гуманоидов
- учёт столкновений
- online-планирование и управление
🚀 Установка
git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .
Требуется Python 3.12+ (частичная поддержка Python 3.10–3.11).
PyRoki — это:
- 📐 Удобный фреймворк для исследований в области робототехники.
- 🛠️ Подходит как для академических, так и для прикладных задач.
- 🌐 Гибкий и масштабируемый — от одного робота до больших motion-баз.
Если интересен пример интеграции с ROS, Gazebo или симуляцией цифрового двойника — дай знать, покажу!
🔗 Репозиторий (https://github.com/chungmin99/pyroki)
#Python #Robotics #Kinematics #InverseKinematics #MotionPlanning #OpenSource
@Python_Community_ru
🖥 Топ Python-библиотек для работы с PDF
Работаешь с PDF в Python? Вот подборка лучших библиотек, которые помогут извлекать текст, редактировать, создавать и анализировать PDF-документы. Каждая из них имеет свои сильные стороны 👇
📌 PyPDF2 — для чтения, разделения, объединения, поворота и модификации PDF
🔗 https://github.com/py-pdf/pypdf
⛏ PDFMiner — извлекает текст, структуру и метаинформацию из PDF (в том числе со шрифтами и координатами)
🔗 https://github.com/pdfminer/pdfminer.six
📊 ReportLab — создание PDF-файлов с графиками, таблицами, стилями и вёрсткой
🔗 https://www.reportlab.com/opensource/
🌐 PyPDFium2 — быстрый рендеринг и извлечение изображений с помощью движка PDFium
🔗 https://pypi.org/project/pypdfium2/
🛠 pdfplumber — удобное извлечение текста, таблиц и координат объектов
🔗 https://github.com/jsvine/pdfplumber
📄 PyMuPDF (fitz) — быстрая и мощная библиотека для анализа, рендеринга и аннотирования PDF
🔗 https://github.com/pymupdf/PyMuPDF
🔜 Примеры по работе с библиотеками (https://uproger.com/luchshie-python-bibliotek-dlya-raboty-s-pdf/)
Используй их вместе или по отдельности — в зависимости от того, нужно ли тебе распарсить текст, извлечь таблицу, отрендерить страницу или сгенерировать отчёт.
#Python #PDF #PyPDF2 #PDFMiner #ReportLab #pdfplumber #PyMuPDF #PyPDFium2 #DevTools #PythonDev #OpenSource
@Python_Community_ru
Работаешь с PDF в Python? Вот подборка лучших библиотек, которые помогут извлекать текст, редактировать, создавать и анализировать PDF-документы. Каждая из них имеет свои сильные стороны 👇
📌 PyPDF2 — для чтения, разделения, объединения, поворота и модификации PDF
🔗 https://github.com/py-pdf/pypdf
⛏ PDFMiner — извлекает текст, структуру и метаинформацию из PDF (в том числе со шрифтами и координатами)
🔗 https://github.com/pdfminer/pdfminer.six
📊 ReportLab — создание PDF-файлов с графиками, таблицами, стилями и вёрсткой
🔗 https://www.reportlab.com/opensource/
🌐 PyPDFium2 — быстрый рендеринг и извлечение изображений с помощью движка PDFium
🔗 https://pypi.org/project/pypdfium2/
🛠 pdfplumber — удобное извлечение текста, таблиц и координат объектов
🔗 https://github.com/jsvine/pdfplumber
📄 PyMuPDF (fitz) — быстрая и мощная библиотека для анализа, рендеринга и аннотирования PDF
🔗 https://github.com/pymupdf/PyMuPDF
🔜 Примеры по работе с библиотеками (https://uproger.com/luchshie-python-bibliotek-dlya-raboty-s-pdf/)
Используй их вместе или по отдельности — в зависимости от того, нужно ли тебе распарсить текст, извлечь таблицу, отрендерить страницу или сгенерировать отчёт.
#Python #PDF #PyPDF2 #PDFMiner #ReportLab #pdfplumber #PyMuPDF #PyPDFium2 #DevTools #PythonDev #OpenSource
@Python_Community_ru
🖥 py-pglite — PostgreSQL без установки, тестируй как с SQLite!
py-pglite — обёртка PGlite для Python, позволяющая запускать настоящую базу PostgreSQL прямо при тестах. Без Docker, без настройки — просто импортируй и работай.
📌 Почему это круто:
- 🧪 Ноль конфигурации: никакого Postgres и Docker, только Python
- ⚡ Молниеносный старт: 2–3 с против 30–60 с на традиционные подходы :contentReference[oaicite:2]{index=2}
- 🔐 Изолированные базы: новая база для каждого теста — чисто и безопасно
- 🏗️ Реальный Postgres: работает с JSONB, массивами, оконными функциями
- 🔌 Совместимость: SQLAlchemy, Django, psycopg, asyncpg — любая связка :contentReference[oaicite:3]{index=3}
💡 Примеры установки:
pip install py-pglite
pip install py-pglite[sqlalchemy] # SQLAlchemy/SQLModel
pip install py-pglite[django] # Django + pytest-django
pip install py-pglite[asyncpg] # Асинхронный клиент
pip install py-pglite[all] # Всё сразу
🔧 Пример (SQLAlchemy)
python
def test_sqlalchemy_just_works(pglite_session):
user = User(name="Alice")
pglite_session.add(user)
pglite_session.commit()
assert user.id is not None
py‑pglite — идеальный инструмент для unit- и интеграционных тестов, где нужен настоящий Postgres, но без всей админской рутины.
Полноценный PostgreSQL — без его тяжеловесности.
▪Github (https://github.com/wey-gu/py-pglite)
#python #sql #PostgreSQL #opensource
@Python_Community_ru
py-pglite — обёртка PGlite для Python, позволяющая запускать настоящую базу PostgreSQL прямо при тестах. Без Docker, без настройки — просто импортируй и работай.
📌 Почему это круто:
- 🧪 Ноль конфигурации: никакого Postgres и Docker, только Python
- ⚡ Молниеносный старт: 2–3 с против 30–60 с на традиционные подходы :contentReference[oaicite:2]{index=2}
- 🔐 Изолированные базы: новая база для каждого теста — чисто и безопасно
- 🏗️ Реальный Postgres: работает с JSONB, массивами, оконными функциями
- 🔌 Совместимость: SQLAlchemy, Django, psycopg, asyncpg — любая связка :contentReference[oaicite:3]{index=3}
💡 Примеры установки:
pip install py-pglite
pip install py-pglite[sqlalchemy] # SQLAlchemy/SQLModel
pip install py-pglite[django] # Django + pytest-django
pip install py-pglite[asyncpg] # Асинхронный клиент
pip install py-pglite[all] # Всё сразу
🔧 Пример (SQLAlchemy)
python
def test_sqlalchemy_just_works(pglite_session):
user = User(name="Alice")
pglite_session.add(user)
pglite_session.commit()
assert user.id is not None
py‑pglite — идеальный инструмент для unit- и интеграционных тестов, где нужен настоящий Postgres, но без всей админской рутины.
Полноценный PostgreSQL — без его тяжеловесности.
▪Github (https://github.com/wey-gu/py-pglite)
#python #sql #PostgreSQL #opensource
@Python_Community_ru