🗣️ RealtimeVoiceChat — живой голосовой чат с ИИ.
RealtimeVoiceChat (https://github.com/KoljaB/RealtimeVoiceChaT) — это open-source проект, который позволяет общаться с LLM в реальном времени голосом. Он объединяет распознавание речи, LLM и синтез речи в единую систему с минимальной задержкой — около 500 мс при локальной установке.
➡️ Как работает:
1. Запись речи в браузере
2. Передача аудио по WebSocket на сервер
3. Распознавание речи через RealtimeSTT (на базе Whisper)
4. Ответ от LLM (Ollama, OpenAI и др.)
5. Озвучка ответа через RealtimeTTS (Coqui XTTSv2, Kokoro и др.)
6. Обратная передача аудио в браузер
7. Поддержка прерываний и динамики через turndetect.py
✨ Особенности:
- Задержка ~500 мс
- Поддержка разных LLM и TTS движков
- Быстрый запуск через Docker Compose
- Чистый веб-интерфейс на Vanilla JS + Web Audio API
✔️ Стек:
- Backend: Python + FastAPI
- Frontend: JS + WebSockets
- ML: transformers, torchaudio, Ollama, Whisper, TTS
- Контейнеризация: Docker
✔️ Требуется CUDA-совместимая видеокарта (для Whisper/TTS) и Docker.
🔥 Отличный проект для тех, кто хочет интегрировать голосовой интерфейс с LLM — например, для ассистентов, чат-ботов, презентаций или UX-экспериментов.
🔜 Репозиторий: https://github.com/KoljaB/RealtimeVoiceChat
🔜 Демо: https://www.youtube.com/watch?v=-1AD4gakCKw
#tts #llm #opensource
@Python_Community_ru
RealtimeVoiceChat (https://github.com/KoljaB/RealtimeVoiceChaT) — это open-source проект, который позволяет общаться с LLM в реальном времени голосом. Он объединяет распознавание речи, LLM и синтез речи в единую систему с минимальной задержкой — около 500 мс при локальной установке.
➡️ Как работает:
1. Запись речи в браузере
2. Передача аудио по WebSocket на сервер
3. Распознавание речи через RealtimeSTT (на базе Whisper)
4. Ответ от LLM (Ollama, OpenAI и др.)
5. Озвучка ответа через RealtimeTTS (Coqui XTTSv2, Kokoro и др.)
6. Обратная передача аудио в браузер
7. Поддержка прерываний и динамики через turndetect.py
✨ Особенности:
- Задержка ~500 мс
- Поддержка разных LLM и TTS движков
- Быстрый запуск через Docker Compose
- Чистый веб-интерфейс на Vanilla JS + Web Audio API
✔️ Стек:
- Backend: Python + FastAPI
- Frontend: JS + WebSockets
- ML: transformers, torchaudio, Ollama, Whisper, TTS
- Контейнеризация: Docker
✔️ Требуется CUDA-совместимая видеокарта (для Whisper/TTS) и Docker.
🔥 Отличный проект для тех, кто хочет интегрировать голосовой интерфейс с LLM — например, для ассистентов, чат-ботов, презентаций или UX-экспериментов.
🔜 Репозиторий: https://github.com/KoljaB/RealtimeVoiceChat
🔜 Демо: https://www.youtube.com/watch?v=-1AD4gakCKw
#tts #llm #opensource
@Python_Community_ru
GitHub
GitHub - KoljaB/RealtimeVoiceChat: Have a natural, spoken conversation with AI!
Have a natural, spoken conversation with AI! Contribute to KoljaB/RealtimeVoiceChat development by creating an account on GitHub.
👍1