Пару недель назад мы обсуждали с коллегами, что digital-рынок стал похож на перегретый стартап:
новые инструменты, новые фреймворки, новые ИИ-решения — а времени разбираться во всём этом меньше, чем когда-либо.
При этом базовые задачи у всех одинаковые: держать процессы под контролем, следить за качеством, закрывать акты день в день и не терять фокус.
В итоге несколько авторов digital-каналов решили объединиться и собрать всё полезное в одну папку — «Документы для тех, кто в digital»
🔴 Там 30 файлов, которые помогают выстроить управление, аналитику и внутренние процессы:
– Система мотивации сотрудников в диджитал на 2026 год,
– 4 шаблона основых документов любого ИТ проекта,
– Топ-6 промптов для создания контента,
– Шаблоны отчётов, которые помогают удерживать клиента,
– Чек-лист по GEO оптимизации сайта и контента.
Сохранив единожды папку «Документы для тех, кто в digital», вы сможете спокойно пройтись по всем каналам и скачать множество авторских документов, которые точно пригодятся в работе.
📂 Ссылка на папку: https://t.me/addlist/yXbxnD0CjS84MzBi
А чтобы добавить немного азарта — среди подписавшихся разыграют:
🥇 iPhone Air;
🥈 Яндекс Станцию Лайт 2;
🥉 HUAWEI Freebuds 5.
Как участвовать:
1. Подпишись на папку: https://t.me/addlist/yXbxnD0CjS84MzBi
2. Подтверди участие в боте
🗓 Итоги — 25 октября.
новые инструменты, новые фреймворки, новые ИИ-решения — а времени разбираться во всём этом меньше, чем когда-либо.
При этом базовые задачи у всех одинаковые: держать процессы под контролем, следить за качеством, закрывать акты день в день и не терять фокус.
В итоге несколько авторов digital-каналов решили объединиться и собрать всё полезное в одну папку — «Документы для тех, кто в digital»
– Система мотивации сотрудников в диджитал на 2026 год,
– 4 шаблона основых документов любого ИТ проекта,
– Топ-6 промптов для создания контента,
– Шаблоны отчётов, которые помогают удерживать клиента,
– Чек-лист по GEO оптимизации сайта и контента.
Сохранив единожды папку «Документы для тех, кто в digital», вы сможете спокойно пройтись по всем каналам и скачать множество авторских документов, которые точно пригодятся в работе.
📂 Ссылка на папку: https://t.me/addlist/yXbxnD0CjS84MzBi
А чтобы добавить немного азарта — среди подписавшихся разыграют:
🥇 iPhone Air;
🥈 Яндекс Станцию Лайт 2;
🥉 HUAWEI Freebuds 5.
Как участвовать:
1. Подпишись на папку: https://t.me/addlist/yXbxnD0CjS84MzBi
2. Подтверди участие в боте
🗓 Итоги — 25 октября.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🎧 MiMo Audio: Инновации в аудио языковых моделях
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@Python_Community_ru
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@Python_Community_ru
⚡ Наглядное сравнение скорости нового Python 3.14 с предыдущей версией
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@Python_Community_ru
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@Python_Community_ru
GitHub
python-experiments/free-threading at main · koenvo/python-experiments
My Python Experiments collection. Contribute to koenvo/python-experiments development by creating an account on GitHub.
🔥5
🌐 DeepMind представила URL Context — теперь можно извлекать данные с любой веб-страницы, PDF или картинки просто по ссылке!
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
@Python_Community_ru
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
@Python_Community_ru
💾🎉 copyparty - ваш файловый сервер на любом устройстве
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
@Python_Community_ru
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
@Python_Community_ru
🔥1
Как построить карьеру в машинном обучении, если вы уже знаете Python
Вы работаете с Python — пишете скрипты, анализируете данные или автоматизируете задачи?
Сделайте следующий шаг и примените эти навыки в машинном обучении.
ML — одна из самых быстрорастущих областей IT с высокими зарплатами и сложными задачами. На вебинаре от Кристины Желтовой, директора по разработке моделей в Газпромбанке, вы получите пошаговый план, как стать ML-инженером.
В ходе вебинара разберём:
🟠Из каких сфер чаще всего приходят в профессию ML-инженера;
🟠Какие задачи решают специалисты в этой области;
🟠Какие навыки, технологии и инструменты потребуются для старта в профессии;
🟠Как перейти от теории к работе с реальными моделями и решению проблем бизнеса.
🕗 Встречаемся 15 октября в 19:00 МСК
💬 Обязательно ждем вас в лайве — вы сможете напрямую задать свои вопросы Кристине Желтовой и выстроить личный план перехода в профессию ML-инженера!
😶Зарегистрироваться на бесплатный вебинар (https://r.bothelp.io/tg?domain=intensives_simulative_bot&start=c1717737634212-ds&funnel=web-1510&utm_source=telegram&utm_medium=paid-placement&utm_campaign=pythonl&utm_content=10-10-2025&erid=2Vtzqv7BoQS)
@Python_Community_ru
Вы работаете с Python — пишете скрипты, анализируете данные или автоматизируете задачи?
Сделайте следующий шаг и примените эти навыки в машинном обучении.
ML — одна из самых быстрорастущих областей IT с высокими зарплатами и сложными задачами. На вебинаре от Кристины Желтовой, директора по разработке моделей в Газпромбанке, вы получите пошаговый план, как стать ML-инженером.
В ходе вебинара разберём:
🟠Из каких сфер чаще всего приходят в профессию ML-инженера;
🟠Какие задачи решают специалисты в этой области;
🟠Какие навыки, технологии и инструменты потребуются для старта в профессии;
🟠Как перейти от теории к работе с реальными моделями и решению проблем бизнеса.
🕗 Встречаемся 15 октября в 19:00 МСК
💬 Обязательно ждем вас в лайве — вы сможете напрямую задать свои вопросы Кристине Желтовой и выстроить личный план перехода в профессию ML-инженера!
😶Зарегистрироваться на бесплатный вебинар (https://r.bothelp.io/tg?domain=intensives_simulative_bot&start=c1717737634212-ds&funnel=web-1510&utm_source=telegram&utm_medium=paid-placement&utm_campaign=pythonl&utm_content=10-10-2025&erid=2Vtzqv7BoQS)
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Учим Python на ферме - вышла новая игра, где вместо мотыги ты пишешь код
Забудь про грядки и полив — теперь ферма работает на Python. Ты управляешь роботами, автоматизируешь процессы и наблюдаешь, как код превращается в урожай.
Вместо мотыги - код, вместо удобрений - алгоритмы.
Это не симулятор фермера, а тренажёр программиста с юмором и логикой.
- Всё управление через код - роботы выполняют твои Python-команды;
- Обучение встроено в геймплей — осваиваешь основы без нудных туториалов;
- Без уровней и доната - ферма растёт вместе с твоими навыками;
- Есть русский язык и IntelliSense, можно писать даже из VS Code;
У игры уже 95% положительных отзывов в Steam.
Игра превращает обучение Python в чистое удовольствие - просто запускаешь и начинаешь “программировать урожай”.
👉 Играть (https://store.steampowered.com/app/2060160/The_Farmer_Was_Replaced/)
@Python_Community_ru
Забудь про грядки и полив — теперь ферма работает на Python. Ты управляешь роботами, автоматизируешь процессы и наблюдаешь, как код превращается в урожай.
Вместо мотыги - код, вместо удобрений - алгоритмы.
Это не симулятор фермера, а тренажёр программиста с юмором и логикой.
- Всё управление через код - роботы выполняют твои Python-команды;
- Обучение встроено в геймплей — осваиваешь основы без нудных туториалов;
- Без уровней и доната - ферма растёт вместе с твоими навыками;
- Есть русский язык и IntelliSense, можно писать даже из VS Code;
У игры уже 95% положительных отзывов в Steam.
Игра превращает обучение Python в чистое удовольствие - просто запускаешь и начинаешь “программировать урожай”.
👉 Играть (https://store.steampowered.com/app/2060160/The_Farmer_Was_Replaced/)
@Python_Community_ru
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Если вы вдруг пропустили в Python 3.14 можно отключить GIL!
Это огромное обновление: раньше, даже если вы писали многопоточный код, Python выполнял только один поток за раз, и вы не получали прироста производительности.
Теперь же Python способен реально выполнять потоки параллельно.
И библиотека uv уже полностью поддерживает эту возможность!
Посмотрите сравнение скорости на прикрепленном видео.
@Python_Community_ru
Это огромное обновление: раньше, даже если вы писали многопоточный код, Python выполнял только один поток за раз, и вы не получали прироста производительности.
Теперь же Python способен реально выполнять потоки параллельно.
И библиотека uv уже полностью поддерживает эту возможность!
Посмотрите сравнение скорости на прикрепленном видео.
@Python_Community_ru
🔥2👎1
🎨🚀 HunyuanImage-2.1: Эффективная модель диффузии для генерации изображений
HunyuanImage-2.1 — это мощная модель для создания высококачественных изображений (2048x2048) на основе текстовых описаний. Используя передовые технологии, она значительно улучшает согласование текста и изображения, обеспечивая высокую степень детализации и эстетики.
🚀Основные моменты:
- Генерация изображений высокого разрешения (2K).
- Многоязычная поддержка и улучшенное согласование текста.
- Использование обучения с подкреплением для повышения качества.
- Эффективная архитектура с низкими вычислительными затратами.
- Модуль PromptEnhancer для улучшения производительности.
📌 GitHub: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1
@Python_Community_ru
HunyuanImage-2.1 — это мощная модель для создания высококачественных изображений (2048x2048) на основе текстовых описаний. Используя передовые технологии, она значительно улучшает согласование текста и изображения, обеспечивая высокую степень детализации и эстетики.
🚀Основные моменты:
- Генерация изображений высокого разрешения (2K).
- Многоязычная поддержка и улучшенное согласование текста.
- Использование обучения с подкреплением для повышения качества.
- Эффективная архитектура с низкими вычислительными затратами.
- Модуль PromptEnhancer для улучшения производительности.
📌 GitHub: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1
@Python_Community_ru
🔥1
Media is too big
VIEW IN TELEGRAM
🧠 CraftGPT: AI в Minecraft
CraftGPT — это небольшой языковой модель, предназначенный для работы в Minecraft, обученный на наборе данных TinyChat. Модель может выдавать не совсем корректные или нерелевантные ответы и имеет ограниченное окно контекста в 64 токена. Для оптимальной работы требуется MCHPRS, который использует механизмы редстоуна.
🚀Основные моменты:
- Работает в Minecraft с использованием редстоуна.
- Требует 32 ГБ ОЗУ для загрузки сервера.
- Может занять часы для генерации ответа.
- Рекомендуется тестировать ввод на эмуляторе.
- Ограниченная производительность и качество ответов.
📌 GitHub: https://github.com/sammyuri/craftgpt
#python
@Python_Community_ru
CraftGPT — это небольшой языковой модель, предназначенный для работы в Minecraft, обученный на наборе данных TinyChat. Модель может выдавать не совсем корректные или нерелевантные ответы и имеет ограниченное окно контекста в 64 токена. Для оптимальной работы требуется MCHPRS, который использует механизмы редстоуна.
🚀Основные моменты:
- Работает в Minecraft с использованием редстоуна.
- Требует 32 ГБ ОЗУ для загрузки сервера.
- Может занять часы для генерации ответа.
- Рекомендуется тестировать ввод на эмуляторе.
- Ограниченная производительность и качество ответов.
📌 GitHub: https://github.com/sammyuri/craftgpt
#python
@Python_Community_ru
🎥 Обертка для ComfyUI: WanVideoWrapper
WanVideoWrapper — это инструмент для интеграции видео в ComfyUI, позволяющий легко обрабатывать и визуализировать видеофайлы. Проект предлагает простое решение для работы с видео в рамках интерфейса, расширяя его функциональность.
🚀 Основные моменты:
- Поддержка различных форматов видео
- Легкая интеграция с ComfyUI
- Удобный интерфейс для пользователей
- Возможность настройки параметров обработки
- Активное сообщество и поддержка
📌 GitHub:
#python
@Python_Community_ru
https://github.com/eddyhhlure1Eddy/ode-ComfyUI-WanVideoWrapper
WanVideoWrapper — это инструмент для интеграции видео в ComfyUI, позволяющий легко обрабатывать и визуализировать видеофайлы. Проект предлагает простое решение для работы с видео в рамках интерфейса, расширяя его функциональность.
🚀 Основные моменты:
- Поддержка различных форматов видео
- Легкая интеграция с ComfyUI
- Удобный интерфейс для пользователей
- Возможность настройки параметров обработки
- Активное сообщество и поддержка
📌 GitHub:
#python
@Python_Community_ru
https://github.com/eddyhhlure1Eddy/ode-ComfyUI-WanVideoWrapper
GitHub
GitHub - eddyhhlure1Eddy/ode-ComfyUI-WanVideoWrapper: ode_lowstep
ode_lowstep. Contribute to eddyhhlure1Eddy/ode-ComfyUI-WanVideoWrapper development by creating an account on GitHub.
🔥 Pandas трюк: ускоряем группировки с map вместо merge_groupby
Когда нужно добавить агрегированные значения (например, среднее по группе) обратно в исходный DataFrame, большинство разработчиков делают groupby().transform() или merge().
Но есть менее известный способ — использовать map() после groupby().mean(), который в некоторых случаях работает в 2–3 раза быстрее и требует меньше памяти.
Фокус в том, что groupby().mean() создаёт компактный Series, где индекс — это категория, а значения — результат агрегации.
А map() просто подставляет их обратно в исходный DataFrame без тяжёлого join.
import pandas as pd
import numpy as np
# пример данных
N = 5_000_000
df = pd.DataFrame({
"group": np.random.choice(["A", "B", "C", "D"], N),
"value": np.random.randn(N)
})
# классический подход
df["mean_value_merge"] = df["group"].map(df.groupby("group")["value"].mean())
# сравнение с transform
df["mean_value_transform"] = df.groupby("group")["value"].transform("mean")
# идентичность результата
print(df["mean_value_merge"].equals(df["mean_value_transform"]))
Это особенно полезно на миллионах строк, когда transform начинает “проседать”.
Метод даёт тот же результат, но заметно экономнее по CPU и RAM.
@Python_Community_ru
Когда нужно добавить агрегированные значения (например, среднее по группе) обратно в исходный DataFrame, большинство разработчиков делают groupby().transform() или merge().
Но есть менее известный способ — использовать map() после groupby().mean(), который в некоторых случаях работает в 2–3 раза быстрее и требует меньше памяти.
Фокус в том, что groupby().mean() создаёт компактный Series, где индекс — это категория, а значения — результат агрегации.
А map() просто подставляет их обратно в исходный DataFrame без тяжёлого join.
import pandas as pd
import numpy as np
# пример данных
N = 5_000_000
df = pd.DataFrame({
"group": np.random.choice(["A", "B", "C", "D"], N),
"value": np.random.randn(N)
})
# классический подход
df["mean_value_merge"] = df["group"].map(df.groupby("group")["value"].mean())
# сравнение с transform
df["mean_value_transform"] = df.groupby("group")["value"].transform("mean")
# идентичность результата
print(df["mean_value_merge"].equals(df["mean_value_transform"]))
Это особенно полезно на миллионах строк, когда transform начинает “проседать”.
Метод даёт тот же результат, но заметно экономнее по CPU и RAM.
@Python_Community_ru
🧩 Эффективное кэширование для Python-приложений
dm-cache — это библиотека для кэширования данных в Python, которая обеспечивает высокую производительность и простоту использования. Она поддерживает различные стратегии кэширования и позволяет легко интегрироваться в существующие приложения, улучшая их скорость и отзывчивость.
🚀 Основные моменты:
- Поддержка различных стратегий кэширования.
- Простая интеграция в Python-приложения.
- Высокая производительность и эффективность.
- Легкий в использовании API.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/mingzhao/dm-cache
dm-cache — это библиотека для кэширования данных в Python, которая обеспечивает высокую производительность и простоту использования. Она поддерживает различные стратегии кэширования и позволяет легко интегрироваться в существующие приложения, улучшая их скорость и отзывчивость.
🚀 Основные моменты:
- Поддержка различных стратегий кэширования.
- Простая интеграция в Python-приложения.
- Высокая производительность и эффективность.
- Легкий в использовании API.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/mingzhao/dm-cache
GitHub
GitHub - mingzhao/dm-cache: Generic block-level cache utility based on Linux device mapper framework
Generic block-level cache utility based on Linux device mapper framework - mingzhao/dm-cache
👍1