Python Community
12.8K subscribers
1.27K photos
41 videos
15 files
754 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🎙️ Higgs Audio v2 — открытая аудио‑модель, которая обходит GPT‑4o-mini-tts

Boson AI выложили модель синтеза речи, обученную на 10+ млн часов аудио — и она уже показывает лучшие результаты, чем GPT‑4o-mini-tts и другие закрытые системы.

🧠 Что умеет Higgs Audio v2:
- Генерирует естественную, эмоциональную речь
- Поддерживает мультиспикерность и клонирование голосов без дообучения
- Работает в zero-shot: достаточно текст + один голосовой пример
- Озвучка в 24 kHz — звук заметно лучше, чем у многих систем с 16 kHz

📊 Побеждает GPT‑4o-mini-tts в бенчмарках:
- 75.7 % win rate на эмоциях
- 55.7 % win rate на вопросах
- Отличные метрики по точности и качеству речи

🛠️ Открыт код + модели:
- Новый AudioVerse токенизатор (эффективность + качество)
- Dual‑FFN архитектура
- Q-learning для адаптивной выразительности

git clone https://github.com/boson-ai/higgs-audio.git
cd higgs-audio

pip install -r requirements.txt
pip install -e .

🔥 GitHub: https://github.com/boson-ai/higgs-audio



@Python_Community_ru
🗂 Copyparty — «всё-в-одном» файловый сервер, запускаемый одной командой Python

Что это такое
- Один файл = полноценный NAS: HTTP/HTTPS, WebDAV, FTP, TFTP, Zeroconf
- Быстрые загрузки с возобновлением (resumable)
- Дедупликация, превью, миниатюры, медиабаза, поиск
- Без внешних зависимостей и БД — один .py-файл или standalone .exe/.apk
- Работает на Linux, Windows, macOS, Raspberry Pi

Для чего полезно :
- Создать домашний медиасервер и быстрый обмен файлами в локальной сети
- Раздача билдов/прошивок внутри команды без S3 и лишней админки
- LAN-party или мероприятия, где нужно «одно место» для обмена файлами

> 📝 Чтобы развернуть, достаточно запустить: python3 copyparty.py

20 k+ звёзд на GitHub, активная разработка, лицензия MIT — отличный инструмент!

🖥 Github (https://github.com/9001/copyparty)



@Python_Community_ru
🚀 sebastien/multiplex — Command‑Line Process Multiplexer

Что это: простой CLI и Python API для запуска нескольких процессов параллельно, с гибким управлением зависимостями, задержками и завершением.

Фичи:
- Параллельный или последовательный запуск процессов
- Задержки: +2s, +500ms
- Зависимости: :A, :A&
- Именование процессов и цветной вывод
- Управление через Python API

🔧 Примеры:

- Запуск двух серверов:

multiplex "python -m http.server -p 8000" "python -m http.server -p 8001"


- Сначала сервер, потом бенчмарк:

multiplex "SERVER=python -m http.server" "+2s=ab -n1000 http://localhost:8000/"


- Сценарий: DB → API → тесты:

multiplex "DB=mongod" "API:DB&+2=node server.js" ":API&|end=npm test"


📦 Установка:
pip install multiplex-sh
или просто multiplex.py напрямую с GitHub

🔗 GitHub: https://github.com/sebastien/multiplex

🧰 Подходит всем, кто запускает несколько сервисов — API, БД, фоновые задачи — и хочет сделать это красиво.



@Python_Community_ru
🔍 Regex не прощает ошибок… но с Python мы найдем выход!

Когда в запросе опечатка (`"prro"` вместо "pro"`) — `re.search() ничего не найдёт.

🙅‍♂️ Regex: [] → *Ноль результатов*

diff​lib то что нам нужно!
С SequenceMatcher ты можешь находить похожие строки даже с опечатками.

📌 Пример:

from difflib import SequenceMatcher

def fuzzy_match(query, products, threshold=0.6):
matches = []
for product in products:
ratio = SequenceMatcher(None, query.lower(), product.lower()).ratio()
if ratio >= threshold:
matches.append((product, f"{ratio:.2f}"))
return matches


🧠 Результат:

[('iPhone 14 Pro Max', '0.88')]


📦 Используй difflib для user-friendly поиска и автодополнения. Особенно полезно для:
- Поиска товаров
- Обработки ввода пользователя
- Систем рекомендаций

🔥 Идеально, когда нельзя потерять результат из-за одной буквы!



@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
Ведущие ML- и DS-инженеры соберутся 13 и 14 сентября на E-CODE.
Это масштабное IT-событие создано командой Ozon Tech. Вы приглашены, но нужно зарегистрироваться: https://s.ozon.ru/m8XO9ot

Что будет:
6 контентных треков — один из них для ML/DS.
Выступления известных учёных.
Качественный нетворк — комьюнити middle+ специалистов.
Интеллектуальные интерактивы — и эксклюзивный мерч в подарок.
Вечеринки каждый день — на сцене НТР, Заточка, ILWT и Нейромонах Феофан.

E-CODE — комьюнити-пространство, в котором стоит быть 💙

@Python_Community_ru
⚡️ GGUF-версии GPT-OSS от Unsloth.

Unsloth конвертировали обе GPT-OSS (20B (https://huggingface.co/unsloth/gpt-oss-20b-GGUF) и 120B (https://huggingface.co/unsloth/gpt-oss-120b-GGUF)) и исправили ошибки, чтобы повысить качество инференса.

🟡Оптимальный сетап:

🟢20B работает со скоростью более 10 токенов/с при полной точности на 14 ГБ оперативной памяти.

🟢120B с полной точностью будет давать >40 токенов/с на примерно 64 ГБ ОЗУ.

Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.

GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.

Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.

Помимо моделей формата GGUF c полной точностью, Unsloth сделали (https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681) версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.

📌 Подробная пошаговая инструкция по локальному запуску и файнтюну - в документации (https://docs.unsloth.ai/basics/gpt-oss-how-to-run-and-fine-tune) Unsloth.


🟡Набор моделей (https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681)
🟡Документация (https://docs.unsloth.ai/basics/gpt-oss-how-to-run-and-fine-tune)


@ai_machinelearning_big_data

#AI #ML #GPTOSS #GGUF #Unsloth

@Python_Community_ru
🐉 Windmill — open-source платформа для разработки внутренних инструментов, которая превращает скрипты в готовые API, фоновые задачи и веб-интерфейсы. Проект позиционируется как альтернатива коммерческим решениям вроде Retool или Superblocks, но с акцентом на гибкость и self-hosted развёртывание.

Интересно реализована идея автоматической генерации UI: достаточно написать скрипт на Python, TypeScript, Go или Bash и Windmill создаст для него веб-форму с параметрами. Готовые скрипты можно комбинировать в сложные workflows или встраивать в low-code приложения. Под капотом — Rust, Postgres и sandbox-исполнение через nsjail для безопасности.

🤖 GitHub (https://github.com/windmill-labs/windmill)



@Python_Community_ru
🛞 CrossHair — необычный инструмент для анализа Python-кода, который использует символьное выполнение для поиска ошибок. Вместо традиционных тестов он проверяет корректность функций, анализируя их поведение на основе аннотаций типов и контрактов.

Под капотом работает SMT-решатель, который ищет входные данные, нарушающие условия. Например, может автоматически обнаружить, что ваша функция падает на отрицательных числах, хотя в контракте указано x: PositiveInt. Интегрируется с Hypothesis и популярными IDE.

🤖 GitHub (https://github.com/pschanely/CrossHair)



@Python_Community_ru
⚠️ Внимание: фишинг-атака на разработчиков Python. Злоумышленники рассылают поддельные письма от имени PyPI с домена pypj.org, требуя "подтвердить email".

Уже пострадал популярный пакет num2words (3M+ загрузок/месяц) — через захваченные аккаунты были выпущены вредоносные обновления. Атака повторяет недавний инцидент с NPM, где скомпрометировали пакеты с 100M+ загрузок в неделю.

🔗 Ссылка - *клик* (https://blog.pypi.org/posts/2025-07-31-incident-report-phishing-attack/)



@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Нужно временно отключить все принты — например, в проде или при юнит-тестах?

Этот трюк нужен, чтобы временно отключить принты не удаляя и не комментируя строки вручную.

На экране простой способ сделать это через контекстный менеджер — без сторонних библиотек и без комментирования строк.


import sys, os
from contextlib import contextmanager

@contextmanager
def suppress_print():
saved = sys.stdout
sys.stdout = open(os.devnull, 'w')
yield
sys.stdout.close()
sys.stdout = saved

Пример:

print("Это видно")
with suppress_print():
print("А это — нет")
print("Снова видно")

- вопросы с собеседований Python

@Python_Community_ru
🔥1
🖥 Second‑Me

Это ваш “цифровой двойник”: агент, который обучается на ваших заметках, письмах и постах и помогает вести аккаунты в соцсетях.

В 2025 году проект получил крупное обновление — добавлен модуль для управления площадками вроде LinkedIn и Airbnb, а также улучшена персонализация бота.

https://github.com/mindverse/Second-Me



@Python_Community_ru
📰 Python без GIL: новая эра многопоточности

Недавно в Python 3.13 появилась экспериментальная возможность отключить Global Interpreter Lock — механизм, который десятилетиями ограничивал настоящую многопоточность в Python. Теперь можно сравнить производительность обычной и свободнопоточной версий интерпретатора.

Тесты с CPU-интенсивными задачами показывают ускорение в 3-4 раза при использовании 4 потоков в версии без GIL. Однако за это приходится платить: усложняется сборка мусора, требуется новая система управления памятью, а некоторые объекты становятся просто бессмертными.

Пока free-threaded Python остаётся опциональным, но в будущих версиях, начиная с 3.14, он может стать стандартом. Главный вопрос — насколько быстро сообщество и библиотеки адаптируются к этим изменениям.

🔗 Ссылка - *клик* (https://blog.jetbrains.com/pycharm/2025/07/faster-python-unlocking-the-python-global-interpreter-lock/)



@Python_Community_ru
👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 УСКОРЕНИЕ КОДА ЗА СЧЁТ ЛОКАЛЬНЫХ ПЕРЕМЕННЫХ

💡 Используй локальные переменные внутри циклов — это может ускорить выполнение на 20–30%, особенно в критичных по времени участках.

Почему это работает?
В Python доступ к локальной переменной быстрее, чем к глобальной или объектной, потому что локальные хранятся в массиве, а не в словаре.

Пример:


# Медленно: обращение к свойствам объекта в цикле
class Processor:
def __init__(self, data):
self.data = data

def compute(self):
total = 0
for item in self.data:
total += item * item
return total



# Быстрее: кэшируем ссылку на data как локальную переменную
class Processor:
def __init__(self, data):
self.data = data

def compute(self):
data = self.data # локальная переменная
total = 0
for item in data:
total += item * item
return total

# Прирост в скорости особенно заметен при больших объёмах данных```

@Python_Community_ru
Разбираем тестовое задание в Яндекс на позицию Junior аналитика данных

Тестовое задание — важная часть трудоустройства аналитика. Это шанс показать свои навыки на практике и получить оффер мечты.

Приглашаем на бесплатный вебинар, где Андрон Алексанян — эксперт в области аналитики и CEO школы аналитики Simulative — в прямом эфире разберет тестовое задание в Яндекс на позицию Junior аналитика данных.

⚡️На вебинаре вы:
🟠узнаете, какие навыки и знания необходимы для успешного выполнения заданий;
🟠поймёте, что хочет увидеть работодатель;
🟠получите советы и лайфхаки;
🟠вместе с Андроном разберете в прямом эфире реальный пример тестового 🔥

Чему именно научимся на вебинаре:
🟠С помощью Pandas проанализируем Яндекс-запросы за несколько недель, загрузив их из json-файла;
🟠Найдем закономерности и отличия использования сервиса на мобильных устройствах и компьютерах;
🟠Разберем фишки Pandas: сложную агрегацию, маппинг, конкатенацию, чейнинг и др.

🕗 Настоятельно рекомендуем не пропускать — для зрителей у нас есть особый бонус, который обеспечит вам уверенный старт в вашей карьере.

😶Зарегистрироваться на бесплатный вебинар (https://r.bothelp.io/tg?domain=events_simulative_bot&start=c1753352424588-ds&funnel=web_yandex&utm_source=telegram&utm_medium=paid-placement&utm_campaign=pythonl&utm_content=29-07-2025&erid=2Vtzqx6P7J1)

@Python_Community_ru
🧪 uQLM — движок для SQL‑запросов к LLM, разработанный в CVS Health

Что если к языковой модели можно обращаться как к обычной базе данных?

💡 uQLM (Universal Query Language for Models) позволяет писать SQL‑подобные запросы, чтобы:

Обращаться к LLM как к таблице
Фильтровать, агрегировать и комбинировать ответы
Подключать собственные модели и источники данных
Использовать привычный синтаксис SQL без prompt-инженерии

📌 Пример запроса:

SELECT generate_response(prompt)
FROM gpt4
WHERE prompt LIKE '%explain%'
LIMIT 5;


uQLM работает как прослойка между пользователем и языковой моделью, облегчая интеграцию ИИ в аналитические пайплайны.

🔗 GitHub: https://github.com/cvs-health/uqlm



@Python_Community_ru