دکتر امیر محمد شهسوارانی
102 subscribers
1.56K photos
6 videos
174 files
1.88K links
☎️هماهنگی وقت مشاوره/برگزاری کارگاه: +989057962633
🌐 https://www.ipbses.com/
http://bit.ly/IPBSES-Institue
باهم در اوج 🦅
Download Telegram
#شناسایی #سازوکارهای بالقوه ایجاد #الکلیزم

#Dopamine #Neurons #Change the #Type of #Excitability in #Response to #Stimuli

#پژوهشگران مدرسه عالی اقتصاد روسیه با همکاری موسسه ملی سلامت و وزارت آموزش روسیه 🇷🇺، دانشکده نرمال سوپریر فرانسه 🇫🇷، و دانشگاه ایندیانای ایالات متحده 🇺🇸، در پژوهش بر ریشه های #عصبی، #ژنتیک و #متابولیک #الکلیزم در افراد دریافتند که مکانیزم های #تغییریافته عمل در پاسخ #نورون های #دوپامینرژیک در پویایی های #کرتکس #پیش_پیشانی منجر به تغییر سطح #دوپامین مغز شده و فرد را به سمت الکلیزم سوق دهند.

Abstract
#The #dynamics of #neuronal #excitability #determine the #neuron’s response to stimuli, its #synchronization and #resonance properties and, ultimately, the computations it performs in the #brain. We investigated the dynamical #mechanisms underlying the excitability type of dopamine (#DA) neurons, using a #conductance-based #biophysical model, and its #regulation by intrinsic and #synaptic currents. #Calibrating the model to reproduce low frequency #tonic firing results in #N-methyl-D-aspartate (#NMDA) #excitation balanced by γ-Aminobutyric acid (#GABA)-mediated #inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to #hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A #subthreshold #sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA #receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the #anomalous rectifier #Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a #depolarized γ-Aminobutyric acid receptor (#GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (#AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (#NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation.

لینک منبع 👇🏻(further reading)👇🏻
journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005233

(در صورت جذابیت و علاقمندی به موضوع، مطلب را برای دیگران نیز بازنشر فرمایید).

📢کانال #دکترامیرمحمدشهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
♻️#الگوی #تنفس بر #توانمندی های #شناختی و #پردازش های #هیجانی #انسان تاثیر دارد.

#Nasal #Respiration #Entrains #Human #Limbic #Oscillations and #Modulates #Cognitive #Function

🔆متخصصان اعصاب دانشکده پزشکی دانشگاه نورث وسترن واقع در شیکاگو 🇺🇸 در پژوهش های خود دریافته اند #ریتم های #تنفسی تاثیرات معناداری بر فعالیت های نورونی مرتبط با #تسهیل #حافظه و #قضاوت های #هیجانی دارند.
🔬در این پژوهش با بررسی #اسپیرومتری و #الکتروانسفالوگرافی مشخص شد هنگام #تنفس از راه #بینی، به هنگام #دم افراد چهره های ترسناک را سریعتر از حین #بازدم می توانند شناسایی کنند. همچنین، هنگام دم از راه بینی افراد سریعتر از بازدم می توانند موضوعات را به خاطر بیاورند. هنگامی که فرد در حالت #وحشتزدگی و #هول قرار می گیرد #سرعت تنفس افزایش می یابد و در نتیجه، در مقایسه با حال عادی، زمان بیشتری به دم اختصاص می یابد. به همین دلیل #مدارهای #ادراک ترس بیشتر و سریعتر و با حساسیت بالاتری فعال می شوند و بالطبع فرد تجارب ترسناک زیادی خواهد داشت.
🔍یافته مهم دیگر این پژوهش مشخص شدن تفاوت معنادار الگوهای فعالیت بادامه و سیستم لیمبیک هنگام دم و بازدم است. هنگام دم از راه بینی، نورون های کرتکس بویایی، بادامه، و هیپوکامپ فعال می شوند که همگی در اطراف سیستم لیمبیک هستند.،
⚠️تمرینات مراقبه ای بویژه با تمرکز بر اصلاح ریتم های تنفس و متعادل ساختن زمان دم و بازدم، نوسانات امواج مغزی در نواحی لیمبیک را متعادل و همگام می کند که به کاهش ادارک ترس و تنش در افراد منجر می شود.

Abstract
The need to #breathe links the #mammalian #olfactory #system #inextricably to the #respiratory #rhythms that draw air through the nose. In #rodents and other small #animals, slow #oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in #olfactory #bulb and #cortex, and faster oscillatory #bursts are coupled to specific phases of the #respiratory #cycle. These dynamic rhythms are thought to regulate #cortical #excitability and coordinate network interactions, helping to shape olfactory coding, #memory, and #behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired #intracranial #EEG data from rare patients (#Ps) with medically #refractory #epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human #piriform (olfactory) cortex, as well as in #limbic-related brain areas, including #amygdala and #hippocampus. Notably, oscillatory power #peaked during inspiration and dissipated when breathing was diverted from #nose to #mouth. Parallel behavioral experiments showed that breathing phase enhances #fear #discrimination and #memory #retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior.

لینک منبع 👇🏻(further reading)👇🏻
http://www.jneurosci.org/content/36/49/12448

(در صورت جذابیت و علاقمندی به موضوع، مطلب را برای دیگران نیز بازنشر فرمایید).

📢کانال #دکترامیرمحمدشهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani