This media is not supported in your browser
VIEW IN TELEGRAM
Вот 17 авторских обучающих IT каналов по самым востребованным областям программирования:
Выбирай своё направление:
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Алюминиевая банка в качестве ротора в бегущем магнитное поле ⚡️
Банка ведет себя также как и ротор, ведь в ней тоже могут наводиться индукционные токи, а затем взаимодействовать со внешним полем статора, заставляя её вращаться.
Одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока.
При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.
Для создания кругового вращающегося поля необходимо выполнение двух условий:
▪️ 1.Оси катушек должны быть сдвинуты в пространстве друг относительно друга на определенный угол (для двухфазной системы – на 90°, для трехфазной – на 120°).
▪️ 2. Токи, питающие катушки, должны быть сдвинуты по фазе соответственно пространственному смещению катушек.
Здесь такой же принцип, как и асинхронного двигателя. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Ω, принципиально меньшей скорости вращения поля. Отсюда название двигателя — асинхронный.
💡 Physics.Math.Code // @physics_lib
Банка ведет себя также как и ротор, ведь в ней тоже могут наводиться индукционные токи, а затем взаимодействовать со внешним полем статора, заставляя её вращаться.
Одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока.
При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.
Для создания кругового вращающегося поля необходимо выполнение двух условий:
▪️ 1.Оси катушек должны быть сдвинуты в пространстве друг относительно друга на определенный угол (для двухфазной системы – на 90°, для трехфазной – на 120°).
▪️ 2. Токи, питающие катушки, должны быть сдвинуты по фазе соответственно пространственному смещению катушек.
Здесь такой же принцип, как и асинхронного двигателя. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.
В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью Ω, принципиально меньшей скорости вращения поля. Отсюда название двигателя — асинхронный.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❌ Без этого не сдать ЕГЭ на 90+
Речь идет оформулах, необходимых для решения задач.
Как раз сейчас на канале «Профиматики» в закрепе ты сможешь найти файл со всеми формулами для ЕГЭ 2025 👉 https://th.link/X07qW
И не забудь добавить канал себе!
Ведь «Профиматика» – школа подготовки к ЕГЭ по профильной математике, которая каждый месяц проводит бесплатные интенсивы, ведет открытые стримы с разбором задач и выкладывает методички в общий доступ.
А канал ведут опытные преподаватели и эксперты ЕГЭ:
✔️ Обучили 2 000 выпускников, из них — больше 300 человек сдали ЕГЭ на 90+ баллов!
✔️ В 2024 году 17 учеников стали стобалльниками.
✔️ А каждый третий набрал 90+ 😎
Поэтому скорее залетай, чтобы узнать, как сдать ЕГЭ по математике на 90+ ⬇️
https://th.link/X07qW
Речь идет о
Как раз сейчас на канале «Профиматики» в закрепе ты сможешь найти файл со всеми формулами для ЕГЭ 2025 👉 https://th.link/X07qW
И не забудь добавить канал себе!
Ведь «Профиматика» – школа подготовки к ЕГЭ по профильной математике, которая каждый месяц проводит бесплатные интенсивы, ведет открытые стримы с разбором задач и выкладывает методички в общий доступ.
А канал ведут опытные преподаватели и эксперты ЕГЭ:
✔️ Обучили 2 000 выпускников, из них — больше 300 человек сдали ЕГЭ на 90+ баллов!
✔️ В 2024 году 17 учеников стали стобалльниками.
✔️ А каждый третий набрал 90+ 😎
Поэтому скорее залетай, чтобы узнать, как сдать ЕГЭ по математике на 90+ ⬇️
https://th.link/X07qW
Media is too big
VIEW IN TELEGRAM
Физические основы возникновения муара при сканировании изображений: Сканирование, фактически, представляет собой модуляцию сигналов в узлах сетки сканера яркостью узлов типографского растра. В общем виде получается произведение двух модулированных синусоид (решёток) с различным периодом пространственных колебаний. Одна гармоника может иметь больший период, равный сумме периодов обеих решёток, что и вызывает муар. Вторая всегда имеет период, равный модулю разности периодов решёток и пропадает, потому что не может быть реализована при заданном разрешении сканирования. #физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🎲 Шриниваса Рамануджан родился ровно 138 лет назад
Г.Х. Харди однажды оценил математиков по шкале от 1 до 100 на предмет чистого таланта. Харди поставил себе 25 баллов, его коллега Литтлвуд — 30, Гилберт — 80, а Рамануджан — высший балл — 100.
📝 Бесконечно повторяющиеся радикалы Рамануджана
👳♀️ Рамануджан — гений, опередивший свое время (фильм)
#математика #факты #math #science #алгебра #наука
💡 Physics.Math.Code // @physics_lib
Г.Х. Харди однажды оценил математиков по шкале от 1 до 100 на предмет чистого таланта. Харди поставил себе 25 баллов, его коллега Литтлвуд — 30, Гилберт — 80, а Рамануджан — высший балл — 100.
👳♀️ Рамануджан — гений, опередивший свое время (фильм)
#математика #факты #math #science #алгебра #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев
💾 Скачать книгу
Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.
Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.
Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.
Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.
Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
Обработка_нечеткой_информации_в_системах_принятия_решений_1989_Борисов.djvu
13.3 MB
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев
Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.
Обработка нечёткой информации применяется в различных областях, например:
▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.
Обработка нечёткой информации применяется в различных областях, например:
▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🔊 Узоры стоячих волн — фигуры Хладни 〰️
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
Гость — Рыбников Юрий Степанович, «учёный», предложивший периодическую систему электроатомов Равноправной Устойчивой Симметрии (РУС) землян, методику построения электроструктур электроатомов, соединившую физику, химию, электричество, счёт РУСов (математику) в единую систему Знаний. Полностью отрицает современную теорию строения атома и множество других современных научных представлений.
Гениальная сдержанность ведущего.
#электродинамика #квантоваяфизика #физика #наука #physics #колебания #science #волны #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Узоры в виде муара появляются во многих ситуациях. При печати напечатанный узор из точек может искажать изображение. В телевидении и цифровой фотографии узор на фотографируемом объекте может искажать форму световых датчиков, создавая нежелательные артефакты.
В физике его проявлением является интерференция волн, которую можно наблюдать в эксперименте с двумя щелями и феномене биений в акустике.
Муар-узоры часто являются артефактомизображений, созданных с помощью различных методов цифрового изображения и компьютерной графики, например, при сканированииполутонового изображения или трассировке лучей на клетчатой плоскости (последнее является частным случаем сглаживания из-за недостаточной дискретизации мелкого регулярного рисунка). Это может быть преодолено при отображении текстур с помощью mipmapping и анизотропной фильтрации.
⚙️ Смотреть ещё видео
#физика #оптика #опыты #physics #эксперименты #наука #science #видеоуроки #графика #моделирование #волны
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф
💾 Скачать книгу
Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века - идеей квантования излучения.
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века - идеей квантования излучения.
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
От_Кирхгофа_до_Планка_1981_Х_Г_Шёпф_.djvu
2.2 MB
📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф
Книга профессора Ханс-Георга Шёпфа (ГДР) представляет собой краткое изложение истории развития теории теплового излучения. Автор очень интересно преподносит ее читателям: в первой части он излагает теорию теплового излучения с современной точки зрения, во вторую часть включает оригинальные работы основоположников теории теплового излучения - Кирхгофа. Больцмана. Вина, Рэлея, Планка. Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века — идеей квантования излучения.
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Книга профессора Ханс-Георга Шёпфа (ГДР) представляет собой краткое изложение истории развития теории теплового излучения. Автор очень интересно преподносит ее читателям: в первой части он излагает теорию теплового излучения с современной точки зрения, во вторую часть включает оригинальные работы основоположников теории теплового излучения - Кирхгофа. Больцмана. Вина, Рэлея, Планка. Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века — идеей квантования излучения.
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.
Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM