This media is not supported in your browser
    VIEW IN TELEGRAM
  Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.
#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍39❤18🔥15⚡4🤯4
  This media is not supported in your browser
    VIEW IN TELEGRAM
  На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.
Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.
1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.
Физика в действии: почему именно ртуть?
▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.
Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍92❤36🔥18⚡6🤔4🤩4❤🔥1
  Media is too big
    VIEW IN TELEGRAM
  Все, кто видел ЗРК «Куб», наверняка обращали внимание на его остроконечные ракеты. Но что находится внутри этой самой носовой части? Именно там спрятано сердце системы наведения — головка самонаведения (ГСН) 1SB4M. И её описание звучит как магия из 1960-х: непрерывноволновая полуактивная самонаводящаяся когерентная двухплоскостная моноимпульсная ГСН. Разберем эту длинную формулировку по косточкам, чтобы понять гениальность советских инженеров.
▪️ 1. Полуактивная — Это значит, что ракета не освещает цель своим собственным радаром. Цель подсвечивается мощным лучом от станции наведения (СНР 1С91 с машины комплекса). Ракета же лишь «прислушивается» к отраженному от цели сигналу. Экономит энергию и делает систему менее заметной.
▪️ 2. Непрерывноволновая — Станция подсвета излучает не короткие импульсы, а непрерывный сигнал. Это позволяет с очень высокой точностью определять скорость сближения с целью благодаря Допплеровскому эффекту.
▪️ 3. Когерентная — Это сложное слово означает, что все сигналы (исходный и отраженный) согласованы по фазе. Это позволяет системе эффективно отфильтровывать помехи и выделять слабый отраженный сигнал на фоне земной поверхности и прочих шумов.
▪️ 4. Моноимпульсная и двухплоскостная — Сверхточность! Это ключевое преимущество.
➖ Обычные ГСН могли «качать» луч, чтобы поймать цель и строить траекторию, что занимало время.
➖ Моноимпульсная ГСН 1SB4M определяет угловое положение цели практически мгновенно, за один отраженный импульс (отсюда и «моно»).
➖ Двухплоскостная означает, что она делает это одновременно в двух плоскостях — по азимуту (влево-вправо) и по углу места (вверх-вниз). Это позволяет ракете не просто лететь в сторону цели, а строить точнейшую траекторию перехвата.
Вся эта сложная система, упакованная в носовой обтекатель, позволяла ракете 3М9 комплекса «Куб» эффективно бороться с маневрирующими целями на малых и средних высотах. Это была передовая технология для своего времени, обеспечившая «Кубу» грозную репутацию на полях сражений.
1. Ракета не освещает цель сама. Это делает станция наведения с земли. ГСН ракеты лишь «слышит» отраженный от цели сигнал. Здесь в игру вступает Эффект Доплера. Тот самый, из-за которого звук сирены скорой помощи кажется выше при приближении и ниже при удалении. Частота принятого сигнала (f₁) сравнивается с частотой эталонного сигнала (f₀), который ракета знает. Если цель приближается, частота отраженного сигнала повышается. Если цель удаляется — понижается. Разница этих частот (f₁ - f₀ = Δf) называется доплеровским смещением. По его величине ракета с высочайшей точностью вычисляет радиальную скорость сближения с целью. Это позволяло ракете «понимать», что она догоняет маневренный самолет, а не просто летит в пустоту.
2. «Когерентность» означает, что излучаемый и эталонный сигналы имеют строго согласованную, предсказуемую фазу. Представьте себе два идеально ровных ряда солдат, марширующих в ногу. Это — когерентные сигналы. Помехи или отражения от земли — это как толпа, бегущая вразнобой. ГСН 1SB4M была способна выделять слабый, но «стройный» сигнал, отраженный от цели, на фоне мощных, но «нестройных» помех и отражений от подстилающей поверхности. Это достигалось за счет селекции именно по доплеровскому смещению: земля относительно ракеты почти не движется (Δf ≈ 0), а у самолета — значительное смещение. Ракета просто «не видела» мешающие объекты.
3. Моноимпульсная и двухплоскостная = Сверхточное пеленгование. Обычные ГСН того времени определяли направление на цель, «раскачивая» луч и сравнивая силу сигнала в разные моменты времени (метод конического сканирования). Это было медленно и уязвимо для помех. Моноимпульсный метод решает задачу мгновенно. Сравнивая амплитуды и фазы сигналов во всех четырех каналах за один прием импульса (отсюда «моно»), система с высочайшей точностью вычисляет угол между своей осью и направлением на цель. #физика #ракеты #электродинамика #наука #технологии #physics #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  1👍69🔥33❤19⚡3😱3❤🔥2
  👨🏻💻 Одна из самых известных ситуаций в теории игр — дилемма заключённого. В ней нет правильных или неправильных решений, и каждый выбирает сам, что ему делать, но некоторые решения могут сделать ситуацию в итоге лучше или хуже. Про это и поговорим.
Оригинальная ситуация, с которой всё началось, описывается так:
• Есть два преступника, их поймала полиция в одно и то же время за очень похожие преступления.
• У полиции есть подозрение, что они действовали в сговоре. Чтобы докопаться до сути, преступников развели по разным камерам и сказали им условия.
• Если один из них даёт показания на другого, а другой молчит, то тот, кто молчит, получает 10 лет, а первого освобождают.
• Если оба дают показания на другого, то каждый получает по 2 года.
• Если оба молчат, то полиция остаётся без доказательств и каждый получает полгода тюрьмы.
• Преступники не могут заранее пообщаться между собой и принять совместное решение, каждый выбирает сам, что ему делать.
🧐 Какое решение выгоднее всего принять каждому из них?
📚 12 лучших книг по теме: Теория Графов
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📔 Теория игр и экономическое поведение [1974] фон Нейман Дж. Моргенштер
📚 12 книг по теме: Математические головоломки и задачи
#математика #логика #теория_игр #math #алгоритмы
💡 Physics.Math.Code // @physics_lib
Оригинальная ситуация, с которой всё началось, описывается так:
• Есть два преступника, их поймала полиция в одно и то же время за очень похожие преступления.
• У полиции есть подозрение, что они действовали в сговоре. Чтобы докопаться до сути, преступников развели по разным камерам и сказали им условия.
• Если один из них даёт показания на другого, а другой молчит, то тот, кто молчит, получает 10 лет, а первого освобождают.
• Если оба дают показания на другого, то каждый получает по 2 года.
• Если оба молчат, то полиция остаётся без доказательств и каждый получает полгода тюрьмы.
• Преступники не могут заранее пообщаться между собой и принять совместное решение, каждый выбирает сам, что ему делать.
🧐 Какое решение выгоднее всего принять каждому из них?
📚 12 лучших книг по теме: Теория Графов
📒 Камень, ножницы, теорема. Фон Нейман. Теория игр
📔 Теория игр и экономическое поведение [1974] фон Нейман Дж. Моргенштер
📚 12 книг по теме: Математические головоломки и задачи
#математика #логика #теория_игр #math #алгоритмы
💡 Physics.Math.Code // @physics_lib
3👍41❤15🔥8🤔8😱5
  This media is not supported in your browser
    VIEW IN TELEGRAM
  Фильм:
⚙️ Тест 9 типов подвесок [ЛегоТехникс]
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍74🔥30🤩13❤12😎5✍4⚡4❤🔥4🤓3🤔2😇2
  This media is not supported in your browser
    VIEW IN TELEGRAM
  ⚡️Задачка для наших физиков. Три вопроса для тех, кто хочет проверить своё понимание электродинамики 🧲:
1. Почему проволока вращается?
2. Почему она не останавливается в стабильном положении, в котором просто отталкивается (или притягивается) к магниту?
3. Что будет, если добавить еще один такой же магнит, но положить его на батарейку противоположным полюсом?
#задачи #физика #электродинамика #магнетизм #опыты
💡 Physics.Math.Code // @physics_lib
1. Почему проволока вращается?
2. Почему она не останавливается в стабильном положении, в котором просто отталкивается (или притягивается) к магниту?
3. Что будет, если добавить еще один такой же магнит, но положить его на батарейку противоположным полюсом?
#задачи #физика #электродинамика #магнетизм #опыты
💡 Physics.Math.Code // @physics_lib
👍47❤12⚡3🙈2🔥1